треугольник АВС, уголС=90, АВ=15, О-центр вписанной окружности, проводим радиусы перпендикулярные в точку касания ОК на АС, ОН на ВС, ОЕ на АВ, ОК=ОН=ОЕ=3, ОНСК квадрат, ОН=НС=СК=ОК=3, ВЕ=х, АЕ=АВ-ВЕ=15-х,
ВЕ=ВН=х как касательные проведенные из одной точки,, АЕ=АК=15-х как касательные..., ВС=ВН+НС=х+3, АС=АК+КС=15-х+3=18-х
АВ²=ВС²+АС², 225=(х²+6х+9)+(324-36х+х²), х²-15х+54=0, х=(15+-корень(225-216)/2, х1=9, х2=6, не играет роли какой брать х, х=9, ВС=9+3=12, АС=15-9+3=9, площадьАВС=1/2ВС*АС=1/2*12*9=54
Грань АА1С1С - квадрат.
АС по т.Пифагора равна 20. В призме все боковые ребра равны. ⇒ ВВ1=СС1=АА1=АС=20.
По условию боковые ребра пирамиды АВ1СВ равны, значит, их проекции равны между собой и равны радиусу окружности, описанной около основания АВС. ⇒
Вершина пирамиды В1 проецируется в центр Н описанной около прямоугольного треугольника окружности, т.е. лежит в середине гипотенузы.
∆ АВС прямоугольный, R=АС/2=10.
АН=СН=ВН=10.
Высота призмы совпадает с высотой В1Н пирамиды.
По т.Пифагора
В1Н=√(BB1²-BH²)=√(20²-10²)=√300=10√3
Формула объёма призмы
V=S•h где S - площадь основания, h - высота призмы.
S-12•16:2=96 (ед. площади)
V=96•10√3=960√3 ед. объёма.
треугольник АВС, уголС=90, АВ=15, О-центр вписанной окружности, проводим радиусы перпендикулярные в точку касания ОК на АС, ОН на ВС, ОЕ на АВ, ОК=ОН=ОЕ=3, ОНСК квадрат, ОН=НС=СК=ОК=3, ВЕ=х, АЕ=АВ-ВЕ=15-х,
ВЕ=ВН=х как касательные проведенные из одной точки,, АЕ=АК=15-х как касательные..., ВС=ВН+НС=х+3, АС=АК+КС=15-х+3=18-х
АВ²=ВС²+АС², 225=(х²+6х+9)+(324-36х+х²), х²-15х+54=0, х=(15+-корень(225-216)/2, х1=9, х2=6, не играет роли какой брать х, х=9, ВС=9+3=12, АС=15-9+3=9, площадьАВС=1/2ВС*АС=1/2*12*9=54