∆АВС — равнобедренный (АВ и ВС — боковые стороны, АС — основание).
АВ = ВС = 30 см.
АС = 32 см.
Найти:
S(∆АВС) = ?
Решение:
Проведём из вершины угла АВС высоту ВН на основание АС.
Так как ВН — высота, проведённая к основанию равнобедренного треугольника, то это ещё биссектриса и медиана (по свойству равнобедренного треугольника).
Тогда —
АН = НС = 32 см*0,5 = 16 см.
Рассмотрим ∆ВНС — прямоугольный.
По теореме Пифагора —
BH²+HC² = BC²
BH² = BC²-HC²
BH² = 30²-16²
BH² = 900-256
BH² = 644
ВН = √644 = 2√161 см.
Площадь треугольника равна половине произведения его стороны и высоты, опущенной на эту сторону.
87(а). Поскольку по условию задачи существует точка S, равноудаленная от всех сторон трапеции, то проекция этой точки на плоскость (точка О) , в которой лежит трапеция также должна находится на равных расстояниях от сторон трапеции . Но точка , находящаяся на одинаковых расстояниях от сторон трапеции это центр вписанной окружности ( а он лежит в точке пересечения биссектрис углов при вершинах трапеции).
Итак имеем равнобочную трапецию ABCD с основаниями AD и BC , в которую вписана окружность.
Тогда по свойству четырехугольника , описанного вокруг окружности : AB+CD=BC+AD .
Так как периметр трапеции =48см, то AB+CD=BC+AD=24
Так как трапеция равнобочная, то AB=CD=12 .
Высота трапеции равна AB*cos60=12*0.5=6. Значит радиус вписанной окружности r= h/2= 6/2=3 - это и есть расстояние от точки О до сторон трапеции.
Теперь по теореме Пифагора найдем расстояние от S до сторон трапеции. По условию задачи SO=3 => искомое расстояние=
SQR (3^2+3^2) =3*SQR(2)
88(a). Пусть точка S- проекция точки А на плоскость alpha.
Тогда искомое расстояние -SA.
По условию задачи АВ=АС, Угол АВС=60 град, а угол SBC= 30 градусов.
Так как АВ=ВС ( наклонные равны), то треугольник АВС равнобедренный. Пусть АН его высота (она же медиана посвойству равнобедренного треугольника) . Тогда ВН=10:2=5
Тогда АВ= BH/cos 60= 5/0.5=10
Треугольник BHS прямоугольный ( угол Н- прямой)
Тогда BS= BH/cos30=5*2/sqr(3)=10/sqr(3)
Теперь из прямоугольного треугольника ABS по т Пифагора находим сторону AS:
∆АВС — равнобедренный (АВ и ВС — боковые стороны, АС — основание).
АВ = ВС = 30 см.
АС = 32 см.
Найти:S(∆АВС) = ?
Решение:Проведём из вершины угла АВС высоту ВН на основание АС.
Так как ВН — высота, проведённая к основанию равнобедренного треугольника, то это ещё биссектриса и медиана (по свойству равнобедренного треугольника).
Тогда —
АН = НС = 32 см*0,5 = 16 см.
Рассмотрим ∆ВНС — прямоугольный.
По теореме Пифагора —
BH²+HC² = BC²
BH² = BC²-HC²
BH² = 30²-16²
BH² = 900-256
BH² = 644
ВН = √644 = 2√161 см.
Площадь треугольника равна половине произведения его стороны и высоты, опущенной на эту сторону.Следовательно —
S(∆ABC) = 0,5*BH*AC
S(∆ABC) = 0,5*2√161 см*32 см
S(∆ABC) = 32√161 см².
ответ:32√161 см².
ответ: 87(a) =3*SQR(2),
88(a)= sqr(200/3)
Объяснение:
87(а). Поскольку по условию задачи существует точка S, равноудаленная от всех сторон трапеции, то проекция этой точки на плоскость (точка О) , в которой лежит трапеция также должна находится на равных расстояниях от сторон трапеции . Но точка , находящаяся на одинаковых расстояниях от сторон трапеции это центр вписанной окружности ( а он лежит в точке пересечения биссектрис углов при вершинах трапеции).
Итак имеем равнобочную трапецию ABCD с основаниями AD и BC , в которую вписана окружность.
Тогда по свойству четырехугольника , описанного вокруг окружности : AB+CD=BC+AD .
Так как периметр трапеции =48см, то AB+CD=BC+AD=24
Так как трапеция равнобочная, то AB=CD=12 .
Высота трапеции равна AB*cos60=12*0.5=6. Значит радиус вписанной окружности r= h/2= 6/2=3 - это и есть расстояние от точки О до сторон трапеции.
Теперь по теореме Пифагора найдем расстояние от S до сторон трапеции. По условию задачи SO=3 => искомое расстояние=
SQR (3^2+3^2) =3*SQR(2)
88(a). Пусть точка S- проекция точки А на плоскость alpha.
Тогда искомое расстояние -SA.
По условию задачи АВ=АС, Угол АВС=60 град, а угол SBC= 30 градусов.
Так как АВ=ВС ( наклонные равны), то треугольник АВС равнобедренный. Пусть АН его высота (она же медиана посвойству равнобедренного треугольника) . Тогда ВН=10:2=5
Тогда АВ= BH/cos 60= 5/0.5=10
Треугольник BHS прямоугольный ( угол Н- прямой)
Тогда BS= BH/cos30=5*2/sqr(3)=10/sqr(3)
Теперь из прямоугольного треугольника ABS по т Пифагора находим сторону AS:
AS^2= AB^2-BS^2=100-100/3=200/3
AS= sqr(200/3)