Летние каникулы всегда приносят приятные впечатления. позади остались уроки, школьные звонки и переменки, а впереди – ожидание чего-то хорошего. вдвоем с сестрой мы ухаживаем за нашими овощами. на нашей зеленой грядке растут укроп, петрушка, щавель и редис. мы с удовольствием поливаем и пропалываем свою зеленую грядку. и приятно слышать от мамы за обедом следующие слова: " какой удивительно вкусный салат получился из ваших овощей! какие вы умнички, мои девочки! " летом времени достаточно: можно и с подружками погулять, и в гости съездить, и в разные игры поиграть. но больше всего я поездки на море с родителями. я наконец-то научилась плавать этим летом и рада этому. море мне нравится. оно настолько глубокое и широкое, и такое загадочное, что иногда даже пугает своей непредсказуемостью. море бывает одновременно близким и далеким, теплым и прохладным. а как приятно в летний жаркий день окунуться в свежую прохладную воду! и плавать, нырять, плескаться! я разложил на столе морские раковины. прикладывая их к уху, я различаю шум прибоя. и можно почувствовать силу морской волны, которая летит, и попадая на камень, выбрасывает мне в лицо множество ярких соленых брызг. мне весело, я смеюсь вместе со всеми: с родителями, морем, солнцем и чайками. лето пролетает стремительно, и уже снова приближается сентябрь. но это и неплохо, ведь совсем скоро я смогу увидеться со своими одноклассниками, поделиться со всеми друзьями и подружками своими летними впечатлениями. а еще хочется поскорее начать учиться, и вновь радовать своими успехами маму с папой.
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему. Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
2. Площадь прямоугольника равна произведению его смежных сторон: S = ab. Доказательство: Достроим прямоугольник до квадрата со стороной (a + b). Площадь квадрата равна квадрату его стороны: Sкв = (a + b)² Площадь квадрата равна сумме площадей фигур, составляющих его: Sкв = a² + b² + 2S a² + b² + 2S = (a + b)² a² + b² + 2S = a² + b² + 2ab 2S = 2ab S = ab. Доказано.
3. Если в четырехугольник можно вписать окружность, то суммы его противолежащих сторон равны. Значит, периметр четырехугольника равен 12 + 12 = 24 см. Площадь любого многоугольника, в который можно вписать окружность вычисляется по формуле: S = pr, где р - полупериметр, r - радиус вписанной окружности. S = 24/2 · 5 = 12 · 5 = 60 см²
Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
2.
Площадь прямоугольника равна произведению его смежных сторон:
S = ab.
Доказательство:
Достроим прямоугольник до квадрата со стороной (a + b).
Площадь квадрата равна квадрату его стороны:
Sкв = (a + b)²
Площадь квадрата равна сумме площадей фигур, составляющих его:
Sкв = a² + b² + 2S
a² + b² + 2S = (a + b)²
a² + b² + 2S = a² + b² + 2ab
2S = 2ab
S = ab.
Доказано.
3.
Если в четырехугольник можно вписать окружность, то суммы его противолежащих сторон равны. Значит, периметр четырехугольника равен 12 + 12 = 24 см.
Площадь любого многоугольника, в который можно вписать окружность вычисляется по формуле:
S = pr, где
р - полупериметр,
r - радиус вписанной окружности.
S = 24/2 · 5 = 12 · 5 = 60 см²