1.тогда угол ВАД равен 180°-135°=45°, т.к. углы, прилежащие к одной стороне АВ параллелограмма в сумме составляют 180°
Площадь равна АВ*АД*sin∠ВАД=42*16*sin45°=42*16*√2/2=336√2/см²/
2. сторона правильного треугольника, через радиус круга, вписанного в него вычисляется по формуле а=2r*tg(180°/3), значит, радиус равен 12/(2tg60°)=6/√3=2√3, и тогда площадь круга равна πr²=(2√3)²π=12π
3. Против угла в 30° лежит катет,/ т.е. высота трапеции, или же меньшая боковая сторона / равный половине гипотенузы, т.е. большей боковой стороны. Отсюда , большую если бок. сторону обозначить х, то меньшая бок. сторона равна 0,5х, а их сумма равна 36, значит, х =36/1,5=24/см/. Итак, высота равна 12 см, т.е. половине от 24см. Площадь ищем, как полусумму оснований, умноженную на высоту. Нижнее основание равно 8√3+√24²-12²=8√3+12√3=20√3. Тогда площадь равна (8√3+20√3)*12/2=168√3/см квадратных/
Сначала нарисуйте нижнее основание АD. Из D восстановите перпендикуляр. Нарисуйте угол А, который равен разнице между суммой углов А и В(180°) и углом В.
Угол А=180-135=45°.
Поскольку угол А=45°, а диагональ ВD с основанием АD образует угол 90°,
Δ АВD равнобедренный прямоугольный.
Высота параллелограмма равна основанию АD.
Площадь параллелограмма равна произведению его высоты на основание. Высота и основание равны, поэтому площадь фигуры можно записать как S=АD²
1.тогда угол ВАД равен 180°-135°=45°, т.к. углы, прилежащие к одной стороне АВ параллелограмма в сумме составляют 180°
Площадь равна АВ*АД*sin∠ВАД=42*16*sin45°=42*16*√2/2=336√2/см²/
2. сторона правильного треугольника, через радиус круга, вписанного в него вычисляется по формуле а=2r*tg(180°/3), значит, радиус равен 12/(2tg60°)=6/√3=2√3, и тогда площадь круга равна πr²=(2√3)²π=12π
3. Против угла в 30° лежит катет,/ т.е. высота трапеции, или же меньшая боковая сторона / равный половине гипотенузы, т.е. большей боковой стороны. Отсюда , большую если бок. сторону обозначить х, то меньшая бок. сторона равна 0,5х, а их сумма равна 36, значит, х =36/1,5=24/см/. Итак, высота равна 12 см, т.е. половине от 24см. Площадь ищем, как полусумму оснований, умноженную на высоту. Нижнее основание равно 8√3+√24²-12²=8√3+12√3=20√3. Тогда площадь равна (8√3+20√3)*12/2=168√3/см квадратных/
В решении задачи очень рисунок.
Сначала нарисуйте нижнее основание АD. Из D восстановите перпендикуляр. Нарисуйте угол А, который равен разнице между суммой углов А и В(180°) и углом В.
Угол А=180-135=45°.
Поскольку угол А=45°, а диагональ ВD с основанием АD образует угол 90°,
Δ АВD равнобедренный прямоугольный.
Высота параллелограмма равна основанию АD.
Площадь параллелограмма равна произведению его высоты на основание. Высота и основание равны, поэтому площадь фигуры можно записать как S=АD²
S=49
АD²=49
АD=√49=7