1. Угол 5 смежный с углом 6, значит угол 6 = 180градусов - 124градуса = 56градусов. Углы 6 и 7 - вертикальные, а значит угол 7 = 56градусов. Углы 5 и 8 - вертикальные, а значит угол 8 = 124градуса. Из того, что прямые a и b параллельны, следует: Углы 5 и 1 - соответственные, а значит угол 1 = 124градуса. Углы 5 и 3 - внутренние односторонние, а значит угол 3 = 180градусов - 124градуса = 56 градусов. Углы 5 и 4 - внутренние накрест лежащие, а значит угол 4 = 124градуса. Углы 6 и 2 - соответственные, а значит угол 2 = 56градусов. Итак: угол 1 = 124 градуса угол 2 = 56 градусов угол 3 = 56 градусов угол 4 = 124 градуса угол 5 = 124 градуса угол 6 = 56 градусов угол 7 = 56 градусов угол 8 = 124 градуса
2. Сначала обозначим угол, вертикальный углу 2 цифрой 3. Т.к. углы 2 и 3 вертикальные, то они равны. Значит мы можем равенство L1 + L2 = 180градусов заменить равенством L1 + L3 = 180градусов. Получаем, что углы 1 и 3 внутренние односторонние, и они равны 180градусам. А т.к. сумма внутренних односторонних углов равна 180градусам, то прямые a и b параллельны. ч.т.д.
3. Сначала обозначим угол, вертикальный углу 1 цифрой 4. Т.к. углы 1 и 4 вертикальные, то они равны. Значит мы можем равенство L1 + L2 = 180градусам заменить равенством L4 +L2= 180градусов. Т.к. L2 = L3, то L4 + L3 = 180градусов. Т.к. углы 4 и 3 - внутренние односторонние,и их сумма равна 180 градусам, то прямые a и c параллельны. ч.т.д.
По условию задачи составим уравнения:
(1/2)*х*у = 240,
х + у + √(х² + у²) = 80.
Из первого уравнения у = 480 / х подставим во второе уравнение.
х + (480 / х) + √( х² + (480 / х)²) = 80.
Приведём к общему знаменателю и корень перенесём в правую часть.
х² - 80х + 480 = √( х⁴ + (480²)
Возведём в квадрат обе части:
х⁴ - 160х³ + 7360х² - 76800х + 480² = х⁴ + 480².
После сокращения получаем уравнение третей степени:
-160х³ + 7360х² - 76800х = 0.
Разделим на -160 и вынесем х за скобки:
х(х² -46х + 480) = 0.
Первый корень х = 0 отбрасываем по ОДЗ.
х² -46х + 480 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-46)^2-4*1*480=2116-4*480=2116-1920=196;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√196-(-46))/(2*1)=(14-(-46))/2=(14+46)/2=60/2=30;
x_2=(-√196-(-46))/(2*1)=(-14-(-46))/2=(-14+46)/2=32/2=16.
Полученные значения и есть размеры катетов.
Гипотенуза равна √(30² + 16²) = √(900 + 256) = √ 1156 = 34 м.
Тогда радиус описанной окружности равен половине гипотенузы: 34 / 2 = 17 м.
Углы 6 и 7 - вертикальные, а значит угол 7 = 56градусов.
Углы 5 и 8 - вертикальные, а значит угол 8 = 124градуса.
Из того, что прямые a и b параллельны, следует:
Углы 5 и 1 - соответственные, а значит угол 1 = 124градуса.
Углы 5 и 3 - внутренние односторонние, а значит угол 3 = 180градусов - 124градуса = 56 градусов.
Углы 5 и 4 - внутренние накрест лежащие, а значит угол 4 = 124градуса.
Углы 6 и 2 - соответственные, а значит угол 2 = 56градусов.
Итак: угол 1 = 124 градуса
угол 2 = 56 градусов
угол 3 = 56 градусов
угол 4 = 124 градуса
угол 5 = 124 градуса
угол 6 = 56 градусов
угол 7 = 56 градусов
угол 8 = 124 градуса
2. Сначала обозначим угол, вертикальный углу 2 цифрой 3. Т.к. углы 2 и 3 вертикальные, то они равны. Значит мы можем равенство L1 + L2 = 180градусов заменить равенством L1 + L3 = 180градусов. Получаем, что углы 1 и 3 внутренние односторонние, и они равны 180градусам. А т.к. сумма внутренних односторонних углов равна 180градусам, то прямые a и b параллельны. ч.т.д.
3. Сначала обозначим угол, вертикальный углу 1 цифрой 4. Т.к. углы 1 и 4 вертикальные, то они равны. Значит мы можем равенство L1 + L2 = 180градусам заменить равенством L4 +L2= 180градусов. Т.к. L2 = L3, то L4 + L3 = 180градусов. Т.к. углы 4 и 3 - внутренние односторонние,и их сумма равна 180 градусам, то прямые a и c параллельны. ч.т.д.