Площа паралелограма ABCD (див. рисунок) дорівнює 18. Точка К лежить на прямій CD. Знайдіть площу трикутника АВК. задача перша
У трапеції ABCD (див. рисунок) основи ВС і AD відносяться як 1: 3. Знайдіть площу трапеції, якщо площа трикутника BCD дорівнює 4 см2. друга задача
Площа прямокутника ABCD, зображеного на рисунку, дорівнює 64 см2. Точки Е, F, М і L — середини сторін прямокутника. Знайдіть площу трикутника KLM. третя задача
а где продолжение условия? основанием пирамиды dabc является правильный треугольник abc сторона которого = ребро da перпендикулярно к плоскости авс , а плоскость dbc составляет с плоскостью авс угол 30*. найдите площадь боковой поверхности пирамиды. условие такое? если такое, то вот решение : s(бок) = 2s(адс) + s(всд) угол дка = 30, тогда ад = ак* tg30 = (av3/2)*v3/3 =a/2 тогда s(асд) = 1/2*а*а/2 = а^2 / 4 дк = а, тогда s(всд) = 1/2*а*а = а^2 / 2 s(бок) = 2*(а^2 / 4) * (а^2 / 2) = а^2
Для удобства будем ставить элементы креста по одному. Для начала ставим белый центр наверх и на кубике находим 4 ребра с белым цветом: бело-красное, бело-оранжевое, бело-синее и бело-зеленое. После этого выбираем любое, его мы и будем ставить первым. У нас может возникнуть несколько ситуаций, каждая из которых рассмотрена на картинках ниже.
Если ребро стоит в среднем слое, то просто движениями R или L' ставим их к белому центру.
Но это место может оказаться уже занято другим ребром с белым цветом, поэтому мы должны отвести его в сторону при поворотов U, U' или U2 и поставить нужное нам ребро уже знакомыми поворотами R или L'.
Если же ребро окажется на верхнем или нижнем слое, то движениями F или F' ставим их в средний слой и делаем R или L', как и до этого.
Также ребро может оказаться в нижнем слое и белым цветом смотреть вниз. В таком случае ставим свободное место наверху над ним и поднимаем ребро движением F2.
Таким образом нужно поставить к белому центру все 4 ребра.