Линия пересечения плоскости AD₁C₁ и плоскости основания есть ребро параллелепипеда АВ.
Угол между плоскостью AD₁C₁ и плоскостью основания есть угол между плоскостью AD₁C₁ перпендикуляром к АВ, то есть высотой ромба. На рисунке обозначена как ВН.
ΔСВН - прямоугольный, с прямым углом Н, по условию острый угол ромба-основания равен 60⁰, отсюда, зная sin60⁰ находим высоту ромба ВН:
а)
Можно было вычислить и так, как мы находили АН во вчерашнем задании, через т. Пифагора, зная, что СН=а/2, как катет, лежащий против угла в 30⁰, но сегодня решаем так, чтобы показать разные пути решения.
б) Высоту параллелепипеда HH₁находим из прямоугольного ΔВН₁Н в котором угол Н прямой, угол В=60⁰, и зная значение tg60⁰:
в) Найти площадь боковой поверхности - самая простая часть этого задания:
, где и - периметр основания и высота пераллелепипеда соответственно.
Линия пересечения плоскости AD₁C₁ и плоскости основания есть ребро параллелепипеда АВ.
Угол между плоскостью AD₁C₁ и плоскостью основания есть угол между плоскостью AD₁C₁ перпендикуляром к АВ, то есть высотой ромба. На рисунке обозначена как ВН.
ΔСВН - прямоугольный, с прямым углом Н, по условию острый угол ромба-основания равен 60⁰, отсюда, зная sin60⁰ находим высоту ромба ВН:
а)
Можно было вычислить и так, как мы находили АН во вчерашнем задании, через т. Пифагора, зная, что СН=а/2, как катет, лежащий против угла в 30⁰, но сегодня решаем так, чтобы показать разные пути решения.
б) Высоту параллелепипеда HH₁находим из прямоугольного ΔВН₁Н в котором угол Н прямой, угол В=60⁰, и зная значение tg60⁰:
в) Найти площадь боковой поверхности - самая простая часть этого задания:
, где и - периметр основания и высота пераллелепипеда соответственно.
г)
Проведем в равнобедренной трапеции высоты ВН и СМ из тупых углов к большему основанию.
1) Рассмотрим прямоугольник ВНМС
Он будет параллелограммом, т.к.
а) 2 высоты, проведенные к основанию параллельны
б) ВС || НМ (т.к. основания)
тогда ВС=МН (по св-ву параллелограмма)
МН=13, тогда
2) Рассмотрим прямоугльный треугольники АВН и ДМС
а) АВ=СД (т.к. трапеция равнобедренная)
б) ВН=СМ (по св-ву параллелограмма)
Вывод: треугольники равны по гипотенузе и катету, тогда АН=МД как соответственные элементы
3) АН=(28-13) : 2=7,5
4) Рассмотрим прямоугольный треугольник АВН
угол А + угол АВН = 90°, тогда угол АВН = 30°
В прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы. Тогда гипотенуза АВ = 2АН, АВ=2*7,5=15
5) АВ=СД (т.к. трапеция равнобедренная)
6) Периметр трапеции равен АВ+ВС+СД+АД=15+13+15+28=71 см.
ответ: Периметр трапеции равен 71 см.