38.4)Треугольник основания ВДД1 - прямоугольный. ДД1 как ребро равно 6, ВД - диагональ, равна 6√2. Тогда площадь основания So=(1/2)*6*6√2 = 18√2. Высота H заданной пирамиды - это половина диагонали грани куба, равна: H = 6√2/2 = 3√2. Теперь находим объём: V = (1/3)*So*H = (1/3)*18√2*3√2 = 36. 38.5) Так как угол между высотой и апофемой равен 450, то треугольник РОН прямоугольный и равнобедренный, РО = НО = 4 см. Тогда РН2 = 2 * НО2 = 2 * 16 = 32. РН = 4 * √2 см. В основании пирамиды квадрат АВСД, тогда АО = СО = ВО = ДО, так как диагонали квадрата делятся в точке О пополам. АН = ВН, так как РН медиана треугольника АРВ, тогда ОН средняя линия треугольника АВС, тогда АВ = ВС = 2 * ОН = 2 * 4 = 8 см. Определим площадь основания. Sавсд = АВ2 = 82 = 64 см2. Определим площадь треугольника РАВ. Sарв = АВ * РН / 2 = 8 * 4 * √2 / 2 = 16 * √2 см2. Sбок = Sарв * 4 = 4 * 16 * √2 = 64 * √2 см2.
a : sin 60° = b : sin 45° = 2R
a = 2R · sin 60° = 2 · 10 · √3/2 = 10√3 дм
b = 2R · sin 45° = 2 · 10 · √2/2 = 10√2 дм
2. По теореме косинусов:
b² = a² + c² - 2ac·cos B
b² ≈ 49 + 9 - 2 · 7 · 3 · 0,0349 ≈ 58 - 1,4658 ≈ 56,5342
b ≈ 7,5
По теореме синусов:
с : sin C = b : sin B
sin C ≈ 3 ·sin 88° / 7,5 ≈ 3 · 0,9994 / 7,5 ≈ 0,3998
∠C ≈ 24°
∠A = 180° - (∠B + ∠C) ≈ 180° - 88° - 24° ≈ 68°
3. В параллелограмме сумма квадратов диагоналей равна сумме квадратов всех его сторон:
AC² + BD² = 2(AB² + AD²)
AC = 40 м, BD = 32 м,
1600 + 1024 = 2(400 + AD²)
2624 = 2(400 + AD²)
AD² = 1312 - 400 = 912
AD ≈ 30,2 м
Диагонали параллелограмма точкой пересечения делятся пополам. По теореме косинусов из треугольника АОВ:
cosα = (ОА² + OB² - AB²) / (2·OA·OB)
cosα = (400 + 256 - 400) / (2 · 20 · 16) = 256 / 640 = 0,4
ДД1 как ребро равно 6, ВД - диагональ, равна 6√2.
Тогда площадь основания So=(1/2)*6*6√2 = 18√2.
Высота H заданной пирамиды - это половина диагонали грани куба, равна: H = 6√2/2 = 3√2.
Теперь находим объём:
V = (1/3)*So*H = (1/3)*18√2*3√2 = 36.
38.5) Так как угол между высотой и апофемой равен 450, то треугольник РОН прямоугольный и равнобедренный, РО = НО = 4 см. Тогда РН2 = 2 * НО2 = 2 * 16 = 32. РН = 4 * √2 см.
В основании пирамиды квадрат АВСД, тогда АО = СО = ВО = ДО, так как диагонали квадрата делятся в точке О пополам. АН = ВН, так как РН медиана треугольника АРВ, тогда ОН средняя линия треугольника АВС, тогда АВ = ВС = 2 * ОН = 2 * 4 = 8 см.
Определим площадь основания. Sавсд = АВ2 = 82 = 64 см2.
Определим площадь треугольника РАВ.
Sарв = АВ * РН / 2 = 8 * 4 * √2 / 2 = 16 * √2 см2.
Sбок = Sарв * 4 = 4 * 16 * √2 = 64 * √2 см2.