Теорема косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними: AC²=AB²+BC²-2*AB*BC*cos∠B Известно, что АВ=ВС+4. Подставляем все известные значения в формулу: 14²=(ВС+4)²+ВС²-2(ВС+4)*ВС*cos120° 196=BC²+8BC+16+BC²-2(BC+4)*BC*(-1/2) 196=2BC²+8BC+16+BC²+4BC 3BC²+12BC-196+16=0 3BC²+12BC-180=0 |:3 BC²+4BC-60=0 D=4²-4*(-60)=16+240=256=16² BC=(-4-16)/2=-10 - не подходит BC=(-4+16)/2=6 см АВ=6+4=10 см
У прямоугольной трапеции 2 прямых угла, 1 тупой и 1 острый. Высота из тупого угла разбивает трапецию на прямоугольник и прямоугольный треугольник. Одна из сторон прямоугольника равна длине меньшего основания и равна 5. Один из катетов прямоугольного треугольника равен 22-5=17, а так как острый угол этого треугольника - 45 градусов, второй катет также равен 17. Второй катет является высотой и второй стороной прямоугольника. Таким образом, площадь прямоугольника равна 5*17=85, а площадь треугольника 17*17/2=289/2=144.5. Значит, суммарная площадь равна 144.5+85=229.5
AC²=AB²+BC²-2*AB*BC*cos∠B
Известно, что АВ=ВС+4. Подставляем все известные значения в формулу:
14²=(ВС+4)²+ВС²-2(ВС+4)*ВС*cos120°
196=BC²+8BC+16+BC²-2(BC+4)*BC*(-1/2)
196=2BC²+8BC+16+BC²+4BC
3BC²+12BC-196+16=0
3BC²+12BC-180=0 |:3
BC²+4BC-60=0
D=4²-4*(-60)=16+240=256=16²
BC=(-4-16)/2=-10 - не подходит
BC=(-4+16)/2=6 см
АВ=6+4=10 см
ответ: АВ=10 см, ВС=6 см.