Высота правильной треугольной пирамида проектируется в центр треугольника. центр правильного треугольника - центр вписанной и описанной окружностей, а так же точка пересечения медиан, биссектрис высот, которые в точке пересечения делятся в отношении 2:1 считая от вершины. высота правильного треугольника вычисляется по формуле: h=a√3/2 h=6√3/2. h=3√3 (2/3)*h=2√3 прямоугольный треугольник: катет высота пирамиды Н(найти), катет (2/3)h, гипотенуза - боковое ребро правильной пирамиды. по теореме Пифагора: 4²=Н²+(2√3)², H²=16-12, H=2
Сделаем схематический рисунок осевого сечения данной фигуры.
Получим равнобедренный треугольник с вписанным в него квадратом.
Примем сторону квадрата (высоту и диаметр цилиндра) равной х.
Тогда верхний диаметр цилиндра КМ=х будет основанием равнобедренного треугольника КВМ. Оно параллельно диаметру конуса.
Диаметр конуса =2•4=8
Высота ∆ КВМ=10
Треугольники АВС и КВМ подобны по равным углам при основаниях и общему углу В.
Из подобия следует отношение:
АС:КМ=ВН:ВЕ
8:х=10:(10-х)
18х=80
х=40/9
V=πr²•h
Радиус цилиндра r= x:2=20/9
Высота цилиндра h=40/9
V=(π•400•40):81•9= ≈ 65,36 (ед. объема)
высота правильного треугольника вычисляется по формуле: h=a√3/2
h=6√3/2. h=3√3
(2/3)*h=2√3
прямоугольный треугольник: катет высота пирамиды Н(найти), катет (2/3)h, гипотенуза - боковое ребро правильной пирамиды.
по теореме Пифагора:
4²=Н²+(2√3)², H²=16-12, H=2