Все стороны правильного (равностороннего) треугольника АВС = а . Его высота ВН есть медиана, её можно найти из прямоугольного треугольника АВН : h=√(a²-a²/4)=√(3a²/4)=(a√3)/2 Центры вписанной и описанной окружностей у правильного Δ совпадают и лежат на пересечении серединных перпендикуляров (они же высоты, биссектрисы и медианы). Медианы в точке пересечения делятся в отношении 2:1 , считая от вершины. И 2 части приходится на радиус описанной окружности, а 1 часть приходится на радиус вписанной окружности. Нас интересует R=2/3·h=2/3·(a√3)/2=a√3/3 . Формула площади правильного треугольника: S=1/2·a·a·sin60°=a²/2·√3/2=a²√3/4 . По условию S=75√3 ⇒ a²√3/4=75√3 ⇒ a²=75·4=300 ⇒ a=10√3 . R=a√3/3=10√3·√3/3=10 .
Объяснение:
1. ОДЗ: х ∈ R
или х ∈ (-∞; +∞)
2. Четность, нечетность.
y(-x) = y(x) ⇒ четная
3. Пересечение с осями.
1) х = 0 ⇒ у = 2
2) у > 0 ⇒ ось 0х не пересекает.
4. Асимптоты.
1) Вертикальных асимптот нет.
2) Наклонная: y = kx + b
y = 0 - горизонтальная асимптота.
5. Возрастание, убывание, экстремумы.
Найдем производную:
Приравняем к 0 и найдем корни:
Найдем знаки производной на промежутках. Если "+" - возрастает, "-" - убывает.
Возрастает при х ∈ (-∞; 0]
Убывает при х ∈ [0; +∞)
См. рис.
6. Выпуклость, вогнутость.
Найдем производную второго порядка.
Приравняем к 0 и найдем корни:
Заменим переменную:
t > 0 ⇒ x² = 1
x₁ = 1; x₂=-1
Найдем знаки второй производной на промежутках.
( См. рисунок.)
x перегиба = ±1
При х ∈ (-∞; -1] ∪ [1; +∞) - вогнута;
при х ∈ [-1; 1] - выпукла.
Строим график.
Его высота ВН есть медиана, её можно найти из прямоугольного треугольника АВН :
h=√(a²-a²/4)=√(3a²/4)=(a√3)/2
Центры вписанной и описанной окружностей у правильного Δ совпадают
и лежат на пересечении серединных перпендикуляров (они же высоты, биссектрисы и медианы). Медианы в точке пересечения делятся в отношении 2:1 , считая от вершины. И 2 части приходится на радиус описанной окружности, а 1 часть приходится на радиус вписанной окружности. Нас интересует R=2/3·h=2/3·(a√3)/2=a√3/3 .
Формула площади правильного треугольника:
S=1/2·a·a·sin60°=a²/2·√3/2=a²√3/4 .
По условию S=75√3 ⇒ a²√3/4=75√3 ⇒ a²=75·4=300 ⇒ a=10√3 .
R=a√3/3=10√3·√3/3=10 .