Задача может решать двумя 1) Для начала надо решить эту задачу, а затем поделить ответы на 2 и всё сложить. 3х - 1 сторона. 4х - 2 сторона. 5х - 3 сторона. 48 см - Р данного треугольника. Составим и решим уравнение: 3х+4х+5х = 48; 12х = 48; х = 4. 3×4=12 (см) - 1 сторона. 4×4=16 (см) - 2 сторона. 5×4=20 (см) - 3 сторона. 1.12÷2 = 6 - середина 1 отрезка. 2.16÷2 = 8 - середина 2 отрезка. 3.20÷2 =10. - середина 3 отрезка. 4.6+8+10 = 24 - Р треуг., вершины которого равны середине сторон. ответ: 24. 2) Вообще, можно просто поделить Р первого данного нам треугольника на 2, то бишь: 48÷2 = 24. ответ: 24. Но Вам мой совет, если Вы всё-таки спросили это для домашней работы, думаю, лучше всё-таки использовать первый вариант.
Теорема 1. В треугольнике против большей стороны лежит больший угол.
Доказательство. Пусть в треугольнике ABC сторона АВ больше стороны АС (рис.1, а).
Рис.1
Докажем, что ∠ С > ∠ В. Отложим на стороне АВ отрезок AD, равный стороне АС (рис.1, б). Так как AD < АВ, то точка D лежит между точками А и В. Следовательно, угол 1 является частью угла С и, значит, ∠ C > ∠ 1. Угол 2 — внешний угол треугольника BDC, поэтому Z 2 > Z В. Углы 1 и 2 равны как углы при основании равнобедренного треугольника ADC. Таким образом, ∠ С > ∠ 1, ∠ 1 = ∠ 2, ∠ 2 > ∠ B. Отсюда следует, что ∠ С > ∠ В.
Справедлива и обратная теорема (ее доказательство проводится методом от противного).
Теорема 2. В треугольнике против большего угла лежит большая сторона.
Из теоремы 1 вытекает
Следствие 1. Если два угла треугольника равны, то треугольник равнобедренный (признак равнобедренного треугольника).
Доказательство следствия проводится методом от противного.
Из следствия 1 следует, что если три угла треугольника равны, то треугольник равносторонний.
Из теоремы 2 получаем
Следствие 3. В прямоугольном треугольнике гипотенуза больше катета.
С использованием теоремы 2 устанавливается следующая теорема.
Теорема 3. Каждая сторона треугольника меньше суммы двух других сторон.
Следствие 4. Для любых трех точек А, В и С, не лежащих на одной прямой, справедливы неравенства: АВ < АС + СВ, АС < АВ + ВС, ВС < ВА + АС.
1) Для начала надо решить эту задачу, а затем поделить ответы на 2 и всё сложить.
3х - 1 сторона.
4х - 2 сторона.
5х - 3 сторона.
48 см - Р данного треугольника.
Составим и решим уравнение:
3х+4х+5х = 48;
12х = 48;
х = 4.
3×4=12 (см) - 1 сторона.
4×4=16 (см) - 2 сторона.
5×4=20 (см) - 3 сторона.
1.12÷2 = 6 - середина 1 отрезка.
2.16÷2 = 8 - середина 2 отрезка.
3.20÷2 =10. - середина 3 отрезка.
4.6+8+10 = 24 - Р треуг., вершины которого равны середине сторон.
ответ: 24.
2) Вообще, можно просто поделить Р первого данного нам треугольника на 2, то бишь:
48÷2 = 24.
ответ: 24.
Но Вам мой совет, если Вы всё-таки спросили это для домашней работы, думаю, лучше всё-таки использовать первый вариант.
Теорема 1. В треугольнике против большей стороны лежит больший угол.
Доказательство. Пусть в треугольнике ABC сторона АВ больше стороны АС (рис.1, а).
Рис.1
Докажем, что ∠ С > ∠ В. Отложим на стороне АВ отрезок AD, равный стороне АС (рис.1, б). Так как AD < АВ, то точка D лежит между точками А и В. Следовательно, угол 1 является частью угла С и, значит, ∠ C > ∠ 1. Угол 2 — внешний угол треугольника BDC, поэтому Z 2 > Z В. Углы 1 и 2 равны как углы при основании равнобедренного треугольника ADC. Таким образом, ∠ С > ∠ 1, ∠ 1 = ∠ 2, ∠ 2 > ∠ B. Отсюда следует, что ∠ С > ∠ В.
Справедлива и обратная теорема (ее доказательство проводится методом от противного).
Теорема 2. В треугольнике против большего угла лежит большая сторона.
Из теоремы 1 вытекает
Следствие 1. Если два угла треугольника равны, то треугольник равнобедренный (признак равнобедренного треугольника).
Доказательство следствия проводится методом от противного.
Из следствия 1 следует, что если три угла треугольника равны, то треугольник равносторонний.
Из теоремы 2 получаем
Следствие 3. В прямоугольном треугольнике гипотенуза больше катета.
С использованием теоремы 2 устанавливается следующая теорема.
Теорема 3. Каждая сторона треугольника меньше суммы двух других сторон.
Следствие 4. Для любых трех точек А, В и С, не лежащих на одной прямой, справедливы неравенства:
АВ < АС + СВ, АС < АВ + ВС, ВС < ВА + АС.