Периметр параллелограмма равен 80 см. Одна из его сторон на 4 см больше другой. Найти стороны параллелограмма. В ромбе KMNP диагонали пересекаются в точке О, угол MNP равен 150 градусов. Найти углы треугольника MON.
Диагональ делит угол прямоугольника в отношении 1:2, а меньшая сторона равна 12 см. Найти диагональ прямоугольника.
В четырехугольнике ABCD противолежащие стороны АВ И СD равны. Диагональ АС составляет с ними равные углы. Доказать, что АВСD - параллелограмм.
Выражение площади 18=1/2 * a * b
Теорема Пифагора 12^2=a^2+b^2
Из первого:
a*b=36
b=36/a
Подставляя во второе:
144=a^2+(36/a)^2
144*a^2=a^4+36^2
a^4-144*a^2+36^2=0
D=144^2-4*36^2=15552=64*81*3
a^2=(144+-8*9*(кореньиз3))/2=72+-36(кореньиз3)=
b^2=144-a^2=144-72-+36(кореньиз3)=72-+36(кореньиз3)
Теперь округлённо посчитаем стороны:
a^2=(72+-36*1,73)=72+-62,35={9,65; 134,35}
a={3,11; 11,6}
cos A = 3,11/12 = 0,26
A = arccos (0,26) = 75 градусов
cos B = 11,6/12 = 0,97
B = arccos (0,97) = 15 градусов
ответ: на стороне ВС.
Объяснение:
точно НЕ третий вариант, треугольник почти равнобедренный и все зависит от величины угла В -тупоугольный или остроугольный треугольник (в остроугольном треугольнике все высоты расположены внутри треугольника)
вид треугольника определить теорема косинусов (косинус тупого угла-число отрицательное, косинус острого угла-число положительное, cos(90°)=0)
22^2 = 16^2+17^2-2*16*17*cosB
(22-17)(22+17) = 256-2*16*17*cos(B)
2*16*17*cos(B) = 256-5*39
cos(B) > 0 ---> треугольник остроугольный, ответ 1)