Периметр основи прямої призми дорівнює 12 см ,а площа бічної поверхні 48 кв .см.Знайдіть довжину бічного ребра цієї призми Периметр основи прямої призми дорівнює 12 см ,а площа бічної поверхні 48 кв .см.Знайдіть д">
1) Проведем другую диагональ АС. Точку пересечения диагоналей обозначим О. ΔАСD - равнобедренный АD= СD=2,9 см. DО - биссектрисса. ΔАОD=ΔСОD (по двум сторонам м углу между ними), значит АО=ОС. ΔАВО=ΔСВО , значит АВ=ВС=2,7 см. Периметр равен 2(2,7+2,9)=2·5,6=11,2 см. 2) Обозначим длину сторон: х; х-8: х+8; 3(х-8). По условию: х+х-8+х+8+3(х-8)=66, 6х-24=66, 6х=90, х=15. Стороны четырехугольника равны: 15 см, 23 см, 7 см, 21 см. 3) Проведем диагональ ВD. ΔАВD имеет углы 30° и 85° Значит ∠АВD =180-85-30=65°. ∠АВС=∠АВD+∠СВD=65°+65°=130°. Проведем другую диагональ АС. ΔАВС по условию равнобедренный: АВ=ВС. Значит углы при основании равны (180-130):2=25°. ∠САD=85-25=60°. Диагонали перпендикулярные, дают возможность вычислить углы прямоугольных треугольников, на которые диагоналями поделен четырехугольник АВСD. Углы четырехугольника: 95°, 50°, 130°, 85°.
Боковое ребро наклонной призмы равно 14 см и составляет с плоскостью основания угол 30º. Нужно найти высоту призмы.
-------------
Высота призмы - это перпендикуляр, опущенный из любой точки одного основания на плоскость другого основания.
Т.к. основания лежат в параллельных плоскостях, высота призмы равна расстоянию между плоскостями, содержащими её основания.
Обозначим вершины призмы ABCDA1B1C1D1 (см.рисунок в приложении)
Опустим из вершины А1 перпендикуляр А1Н на плоскость основания.
А1Н ⊥АН
∆ АА1Н - прямоугольный, его катет- высота призмы А1Н - противолежит углу 30º и равен половине гипотенузы АА1.
А1Н=14:2=7 см
Иначе: А1Н=АА1•sin 30º=14•1/2=7см
–––––––––
Примечание:
Высота призмы не обязательно совпадает с высотой боковой грани. Она совпадает с ней, только если призма прямая. В данном случае призма - наклонная.
ΔАСD - равнобедренный АD= СD=2,9 см. DО - биссектрисса.
ΔАОD=ΔСОD (по двум сторонам м углу между ними), значит АО=ОС.
ΔАВО=ΔСВО , значит АВ=ВС=2,7 см.
Периметр равен 2(2,7+2,9)=2·5,6=11,2 см.
2) Обозначим длину сторон: х; х-8: х+8; 3(х-8).
По условию:
х+х-8+х+8+3(х-8)=66,
6х-24=66,
6х=90,
х=15.
Стороны четырехугольника равны: 15 см, 23 см, 7 см, 21 см.
3) Проведем диагональ ВD. ΔАВD имеет углы 30° и 85°
Значит ∠АВD =180-85-30=65°.
∠АВС=∠АВD+∠СВD=65°+65°=130°.
Проведем другую диагональ АС.
ΔАВС по условию равнобедренный: АВ=ВС.
Значит углы при основании равны (180-130):2=25°.
∠САD=85-25=60°.
Диагонали перпендикулярные, дают возможность вычислить углы прямоугольных треугольников, на которые диагоналями поделен четырехугольник АВСD.
Углы четырехугольника: 95°, 50°, 130°, 85°.