Пусть АВ ∩ СD = О При пересечении двух прямых получаем пары равных углов : ∠AOD = ∠COB = x и ∠AOC = ∠DOB = y По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему : x + y + x = 278° 2 x + y = 278° 2 x + y = 278° ⇒ ⇒ x + y + x + y =360° 2 x + 2 y = 360° x + y = 180° Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒ х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98° Тогда у = 180° - х = 180° - 98° = 82° ответ : 98 ° ; 82° ; 98° ; 82°
По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему :
x + y + x = 278° 2 x + y = 278° 2 x + y = 278°
⇒ ⇒
x + y + x + y =360° 2 x + 2 y = 360° x + y = 180°
Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒
х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98°
Тогда у = 180° - х = 180° - 98° = 82°
ответ : 98 ° ; 82° ; 98° ; 82°
Даны вершины треугольника:
А(3; -1; 6), В(1; 7; -2), С(1; -3; 2).
Находим расстояние между точками.
d = v ((х2 - х1 )² + (у2 - у1 )² + (z2 – z1 )²).
Вектор АВ -2 8 -8 |AB| = √(4 + 64 + 64) =√132.
Вектор ВС 0 -10 4 |BC| = √(0 + 100 + 16) =√116.
Вектор АС -2 -2 -4 |AC| = √(4 + 4 + 16) =√24.
Треугольник АВС
a(ВС) b(АС) c(АВ) p 2p S
10,77 4,89 11,49 13,58 27,158 26,306
116 24 132 квадраты
По теореме косинусов:
cos A = 0,355334527 cos B = 0,905111457 cos С = 0,075809804
Аrad = 1,207524401 Brad = 0,439154533 Сrad = 1,494913719
Аgr = 69,18605183 Bgr = 25,16170132 Сgr = 85,65224685 .
По заданию - треугольник АВС разносторонний.