Найдем точку пересечения диагоналей прямоугольника. Координаты середины вектора АС (диагональ) равны: О(3,5;0,5). Координаты вектора равны разности соответствующих координат точек его конца и начала. Тогда вектор АО{3,5;0,5}, а вектор ВО{2,5;-2,5}. Это половины диагоналей и угол между ними находим по формуле: cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. В нашем случае: cosα=(3,5*2,5+0,5*2,5)/[√(3,5²+0,5²)*√(2,5²+(-2,5)²)]. cosα=(8,75+1,25)/[√(12,25+0,25)*√(6,25+6,25)]. Или cosα=10/12,5=0,8. Значит угол α≈36°
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Скалярное произведение находим по формуле: (a,b)=x1*x2+y1*y2. Вектор АВ{1;3} Вектор ВС{6;-2} (ABxBC)=6+(-6)=0. Значит стороны АВ и ВС перпендикулярны. Следовательно, АВСD - прямоугольник.
1) 180-32 т. к угол АОС смежный с углом СОВ = 148°
2) находится угол СОВ =180-160=20° ,
ОД - биссиктриса СОВ , СОД = 20:2=10°, угол АОД =10+160=170°
3) через пусть Х. Пусть х это 1 часть тогда АВ =5х, ВС =4х ,. Т. к сумма смежных углов =180 . То составим и решим уравнение
5х+4х=180
9х=180
Х=180:9
Х=20
Ав =5*20=100°
ВС=4*20=80°
4) углы 1 и 3 вертикально, а значит равны, угол 1 и 3 =50:2 =25 °
Угол 2 и 4 =180-25 =155°
5) угол 3 = 260-180(угол1+угол2) =80
Угол 3 =угол 1 т. к они вертикальны угол 1=80°
Угол 2=180-80=100°
Так как угол 2 вертикальный с 4 уголом, то угол 4=100°
6) через пусть Х. Пусть Х это угол 3 , значит угол 2=х+30 . Тк сумма смежных углов 180 , то составим и решим уравнение
Х+Х+30=180
2х +30=180
2х=180-30
2х=50
Х=25 °
Угол 3 и 1 вертикальны, значит угол 1 равен 25°
Угол 2 и 4 = 25+30 = 55 °
7)через пусть Х. Пусть Х это угол 1 , значит угол 4 = 3х. Так как сумма смежных углов =180 . Составим и решим уравнение.
3х+х=180
4х=180
Х=180:4
Х=45
Угол 3и 1 равны так как вертикальны , угол 1 равен 45
Угол 4 и 2 вертикальны, значит равны 45*3=135
Координаты вектора равны разности соответствующих координат точек его конца и начала.
Тогда вектор АО{3,5;0,5}, а вектор ВО{2,5;-2,5}.
Это половины диагоналей и угол между ними находим по формуле:
cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. В нашем случае:
cosα=(3,5*2,5+0,5*2,5)/[√(3,5²+0,5²)*√(2,5²+(-2,5)²)].
cosα=(8,75+1,25)/[√(12,25+0,25)*√(6,25+6,25)]. Или
cosα=10/12,5=0,8. Значит угол α≈36°
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю.
Скалярное произведение находим по формуле: (a,b)=x1*x2+y1*y2.
Вектор АВ{1;3}
Вектор ВС{6;-2}
(ABxBC)=6+(-6)=0.
Значит стороны АВ и ВС перпендикулярны.
Следовательно, АВСD - прямоугольник.