Перед посівом соняшників у підприємців виникло питання щодо вибору найбільш врожайного сорту .Один з багатьох запропонованих сортів дає можливість виростити соняшники діаметром 30 см (у середньому)а другий -соняшники діаметром 20 см (у середньому).При цьому числьність на 1 га рослин першого сорту вдвічі менша від чисельності на 1 га рослин другого сорту.Який сорт вибрали підприємці?
Пусть дан △АВС равнобедренный , ВС - основание, т.О ∈ ВС, F ∈ AB,
E ∈ AC ; ОЕ || АВ и ОF || АС ; ОFАЕ = 32см. Найдём АВ - ?
Решение
∠1 = ∠2 потому что △ АВС равнобедренный ( по условию ).
ОF || АС по условию, поэтому ∠2 =∠3 ( соответственные углы образованные при пересечении этих прямых секущей ВО ), значит
∠1 =∠3.
Рассмотрим △ВFO : равнобедренный, BF = FO.
ОЕ || АВ и ОF || АС по условию,значит OFAE - параллелограмм.
По свойству сторон и углов параллелограмма AF = OE и FO = AE.
Найдём периметр РОFАЕ :
Р(ОFАЕ) = 2 * AF + 2 * FO
Р(ОFАЕ) = 2( AF+FO)
BF = FO , то Р(ОFАЕ) = 2( AF + BF)
Р(ОFАЕ) = 2 * АВ
АВ = Р(ОFАЕ) /2 = 32/2 = 16
а) (-2;0) - центр окружности, радиус окружности равен 3.
б) (0; 4) - центр окружности, радиус окружности равен .
в) (5; -7) - центр окружности, радиус окружности равен 4.
Объяснение:
Уравнение окружности имеет вид: (x-a)²+(y-b)²=R². Здесь центр окружности (a; b) . R - радиус окружности.
а) (-2; 0) -центр окружности, R²=9. R²=3². R=3.
б) (0; 4) - центр окружности, , .
в) (5; -7) - центр окружности, R²=16, , R=4.
Заметим, что по условию задачи радиус всегда должен быть положительным. То есть при извлечении корня выбираем только арифметический корень