1. Основанием пирамиды служит прямоугольник со сторонами 6 и 15 см. Высота равна 4 см и проходит через точку пересечения диагоналей основания. Найти площадь боковой поверхности.
Пусть в пирамиде МАВСD AD=BC=6 см, AB=CD=15 см. По условию высота МО=4 см, О - точка пересечения диагоналей основания. Площадь боковой поверхности пирамиды равна сумме площадей боковых граней. Диагонали прямоугольника равны и точкой пересечения делятся пополам, поэтому боковые грани - две пары равных равнобедренных треугольников. S (бок)=2•Ѕ(ВМС):2+2•Ѕ(АМВ):2. Высоты МК и МН боковых граней перпендикулярны сторонам основания, их проекции по т. о 3-х перпендикулярах перпендикулярны сторонам основания, параллельны соседним сторонам и равны их половине. ОК=СВ:2=3 см, ОН=АВ:2=8,5 см. Высоты боковых граней - гипотенузы прямоугольных треугольников МОК и МОН и по т.Пифагора МК= 5 см, МН=8,5 см. Ѕ(бок)=5•15+8,5•6=126 см²
—————————————
2. В правильной треугольной призме через боковое ребро перпендикулярно к противоположной боковой грани проведена плоскость. Вычислить полную площадь поверхности призмы, если площадь сечения равна 4,2√3, а сторона основания 6 см.
Площадь полной поверхности призмы равна сумме площадей двух оснований и площади боковой поверхности. По формуле площади правильного треугольника 2•Ѕ(осн)=2•6²•√3/4=18√3 см²
Площадь сечения - площадь прямоугольника со сторонами, равными высоте призмы и высоте основания. Высота основания ∆ АВС CH=AC•sin60°=3√3 см. Из площади сечения высота призмы СС1=4,2√3:3√3=1,4 см. Площадь боковой поверхности Ѕ(бок)=СС1•3•АС=1,4•18=25,2 см² =>
S трапеции где а и в - основания трапеции h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2 Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны) Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2 Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.
1. Основанием пирамиды служит прямоугольник со сторонами 6 и 15 см. Высота равна 4 см и проходит через точку пересечения диагоналей основания. Найти площадь боковой поверхности.
Пусть в пирамиде МАВСD AD=BC=6 см, AB=CD=15 см. По условию высота МО=4 см, О - точка пересечения диагоналей основания. Площадь боковой поверхности пирамиды равна сумме площадей боковых граней. Диагонали прямоугольника равны и точкой пересечения делятся пополам, поэтому боковые грани - две пары равных равнобедренных треугольников. S (бок)=2•Ѕ(ВМС):2+2•Ѕ(АМВ):2. Высоты МК и МН боковых граней перпендикулярны сторонам основания, их проекции по т. о 3-х перпендикулярах перпендикулярны сторонам основания, параллельны соседним сторонам и равны их половине. ОК=СВ:2=3 см, ОН=АВ:2=8,5 см. Высоты боковых граней - гипотенузы прямоугольных треугольников МОК и МОН и по т.Пифагора МК= 5 см, МН=8,5 см. Ѕ(бок)=5•15+8,5•6=126 см²
—————————————
2. В правильной треугольной призме через боковое ребро перпендикулярно к противоположной боковой грани проведена плоскость. Вычислить полную площадь поверхности призмы, если площадь сечения равна 4,2√3, а сторона основания 6 см.
Площадь полной поверхности призмы равна сумме площадей двух оснований и площади боковой поверхности. По формуле площади правильного треугольника 2•Ѕ(осн)=2•6²•√3/4=18√3 см²
Площадь сечения - площадь прямоугольника со сторонами, равными высоте призмы и высоте основания. Высота основания ∆ АВС CH=AC•sin60°=3√3 см. Из площади сечения высота призмы СС1=4,2√3:3√3=1,4 см. Площадь боковой поверхности Ѕ(бок)=СС1•3•АС=1,4•18=25,2 см² =>
Ѕ(полн)=(18√3 +25,2) см²
где а и в - основания трапеции
h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2
Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны)
Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2
Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.