1) т.к МК=МР ( по условию) , то треуг КМР-р/б с осн КР ( по определению р/б треугольника), след уг К= уг Р ( по св-ву р/б треуг-ка) 2) МР||КТ и КР -секущая , след накрестлеж углы МРК и РКТ равны, следовательно из 1;2) след уг МКР=уг ТКР след КР биссектриса 3) Рассм треуг КМР (в нём: КМ=МР, уг М=90*) а) по т Пифагора КР=√(36+36)=√72=6√2 б) уг К=уг Р=45* (по т о сумме углов в треуг) 4) Рассм треуг КРТ (в нём: уг Р=90*, уг К=45*) уг Т=45* (по т о сумме углов в треуг), след треуг КРТ - р/б с осн КТ, след КР=РТ=6√2. НАйдем по т Пифагора КТ=√(72+72)=√144=12 5) МР=6 ( из п1)
Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти прямые скрещиваются - признак скрещивающихся прямых.
Рассмотрим куб ABCDA1B1C1D1. Обозначим за a прямую, содержащую ребро AB, за b прямую, содержащую ребро BC, за c прямую, содержащую ребро A1B1.
Прямая b лежит в плоскости BB1C, а прямая c пересекает плоскость BB1C в точке B1, которая не принадлежит прямой B. Тогда по признаку выше прямые b и с являются скрещивающимися, что и требовалось доказать.
2) МР||КТ и КР -секущая , след накрестлеж углы МРК и РКТ равны, следовательно из 1;2) след уг МКР=уг ТКР след КР биссектриса
3) Рассм треуг КМР (в нём: КМ=МР, уг М=90*)
а) по т Пифагора КР=√(36+36)=√72=6√2
б) уг К=уг Р=45* (по т о сумме углов в треуг)
4) Рассм треуг КРТ (в нём: уг Р=90*, уг К=45*) уг Т=45* (по т о сумме углов в треуг), след треуг КРТ - р/б с осн КТ, след КР=РТ=6√2. НАйдем по т Пифагора КТ=√(72+72)=√144=12
5) МР=6 ( из п1)
ответ: КТ=12, МР=6
Рассмотрим куб ABCDA1B1C1D1. Обозначим за a прямую, содержащую ребро AB, за b прямую, содержащую ребро BC, за c прямую, содержащую ребро A1B1.
Прямая b лежит в плоскости BB1C, а прямая c пересекает плоскость BB1C в точке B1, которая не принадлежит прямой B. Тогда по признаку выше прямые b и с являются скрещивающимися, что и требовалось доказать.
ответ: да, могут.