1. Внешний угол равен сумме углов, не смежных с ним. Но также смежные углы равны 180°, а в условии было сказано, что этот внешний угол смежен с углом Б. Сумма смежных углов равна 180° => угол Б = 180° - 150° = 30°.
2. Угол А равен 180° - 30° - 90° (сумма всех углов треугольника равна 180°) = 60°.
3. В прямоугольном треугольнике напротив угла в 30° лежит катет, равный половине гипотенузы. Гипотенузой является сторона БС (на моем чертеже угол А = 90°, катет, который как бы горизонтальный - АС, "вертикальный" - АБ).
Пусть x - это сторона АС, тогда БС - это 2х.
4. В условии было дано, что СБ-АС = 10. Подставим значения. 2х-х=10. Х = 10. АС = 10, СБ = 20
Сделайте рисунок, если найдете это нужным. Он очень простой. Пусть дан треугольник АВС, в котором АВ=ВС. Основание треугольника АС равно 20 см. Медиану из вершины В рассматривать не будем - она не может делить треугольник на два с разными периметрами. Медианы из А и С делят исходный треугольник одинаково. Поэтому в принципе это одно и то же решение. Проведем медиану АМ из А к ВС. Примем сторону АВ=2х см, тогда медиана АМ делит ВС на две части по х см каждая. Р (АВМ)= АВ+ВМ+АМ=2х+х+АМ=3х+АМ Р(АСМ)= АС+СМ+АМ=20+х+АМ Вариант1) Р(АВМ)-Р(АСМ)=6 см Тогда 3х+АМ-(20+х+АМ)=6 2х-20=6 2х=26 см 2х=АВ=ВС=26 см Вариант 2) Р(АСМ)-Р(АВМ)=6 20+х+АМ-(3х+АМ)=6 2х=АВ=ВС=14 см
2. Угол А равен 180° - 30° - 90° (сумма всех углов треугольника равна 180°) = 60°.
3. В прямоугольном треугольнике напротив угла в 30° лежит катет, равный половине гипотенузы. Гипотенузой является сторона БС (на моем чертеже угол А = 90°, катет, который как бы горизонтальный - АС, "вертикальный" - АБ).
Пусть x - это сторона АС, тогда БС - это 2х.
4. В условии было дано, что СБ-АС = 10. Подставим значения. 2х-х=10. Х = 10. АС = 10, СБ = 20
Пусть дан треугольник АВС, в котором АВ=ВС.
Основание треугольника АС равно 20 см.
Медиану из вершины В рассматривать не будем - она не может делить треугольник на два с разными периметрами.
Медианы из А и С делят исходный треугольник одинаково.
Поэтому в принципе это одно и то же решение.
Проведем медиану АМ из А к ВС.
Примем сторону АВ=2х см, тогда
медиана АМ делит ВС на две части по х см каждая.
Р (АВМ)= АВ+ВМ+АМ=2х+х+АМ=3х+АМ
Р(АСМ)= АС+СМ+АМ=20+х+АМ
Вариант1)
Р(АВМ)-Р(АСМ)=6 см
Тогда
3х+АМ-(20+х+АМ)=6
2х-20=6
2х=26 см
2х=АВ=ВС=26 см
Вариант 2)
Р(АСМ)-Р(АВМ)=6
20+х+АМ-(3х+АМ)=6
2х=АВ=ВС=14 см