Проведённая высота отсекла прямоугольный треугольник, в котором боковая сторона трапеции будет гипотенузой, высота трапеции - это катет, лежащий против угла в 30 градусов; он равен половине гипотенузы. Следовательно гипотенуза = 5 * 2 = 10 И, наконец, катет - это часть нижнего основания По теореме Пифагора √(10² - 5²) = √75 = 5√3 или через тангенс В нижнем основании таких частей две слева и справа Величина всего нижнего основания складывается из трёх частей 5√3 + 6 + 5√3 = 10√3 + 6 = 2(5 + 3). ответ: 2(√5 + 3)
Даны треугольники АВС и А1В1С1 в которых стороны АС и А1С1, высоты ВН и В1Н1 и медианы ВМ и В1М1 равны.
Прямоугольные треугольники НВМ и Н1В1М1 равны по 4-му признаку равенства, так как у них гипотенузы (ВМ и В1М1) и катеты (ВН и В1Н1) равны (дано). => HM=H1M1 и <BMH=<B1M1H1. Значит равны и углы ВМС и В1М1С1 как смежные с равными.
АМ=МС=А1М1=М1С1 как половины равных отрезков АС и А1С1.
Треугольники АВМ и А1В1М1 равны по двум сторонам (АМ=А1М1, ВМ=В1М1) и углу между ними (<BMH=<B1M1H1 - доказано выше) => АВ = А1В1.
Треугольники ВМС и В1М1С1 равны по двум сторонам (МС=М1С1, ВМ=В1М1) и углу между ними (<BMС=<B1M1С1 - доказано выше) => ВС = В1С1.
Тогда треугольники АВС и А1В1С1 равны по трем сторонам, что и требовалось доказать.
высота трапеции - это катет, лежащий против угла в 30 градусов; он равен половине гипотенузы. Следовательно гипотенуза = 5 * 2 = 10
И, наконец, катет - это часть нижнего основания
По теореме Пифагора √(10² - 5²) = √75 = 5√3
или через тангенс
В нижнем основании таких частей две слева и справа
Величина всего нижнего основания складывается из трёх частей
5√3 + 6 + 5√3 = 10√3 + 6 = 2(5 + 3).
ответ: 2(√5 + 3)
Даны треугольники АВС и А1В1С1 в которых стороны АС и А1С1, высоты ВН и В1Н1 и медианы ВМ и В1М1 равны.
Прямоугольные треугольники НВМ и Н1В1М1 равны по 4-му признаку равенства, так как у них гипотенузы (ВМ и В1М1) и катеты (ВН и В1Н1) равны (дано). => HM=H1M1 и <BMH=<B1M1H1. Значит равны и углы ВМС и В1М1С1 как смежные с равными.
АМ=МС=А1М1=М1С1 как половины равных отрезков АС и А1С1.
Треугольники АВМ и А1В1М1 равны по двум сторонам (АМ=А1М1, ВМ=В1М1) и углу между ними (<BMH=<B1M1H1 - доказано выше) => АВ = А1В1.
Треугольники ВМС и В1М1С1 равны по двум сторонам (МС=М1С1, ВМ=В1М1) и углу между ними (<BMС=<B1M1С1 - доказано выше) => ВС = В1С1.
Тогда треугольники АВС и А1В1С1 равны по трем сторонам, что и требовалось доказать.