Исследовать функцию y=f(x) по графику
1. Область определения функции
D (f) = [-4; 2]
2. Множество значений функции
E (f) = [-3; 2,5]
3. Нули функции
x₁ = -3; x₂ = -1; x₃ = 1
4. Пересечение с осью Oy - точка (0; 2,5)
5. Точки экстремумов
x = -2 - точка локального минимума функции
x = 0 - точка максимума функции
6. Экстремумы функции
y = -2 - локальный минимум функции
y = 2,5 - максимум функции
7. Промежутки монотонности функции
Функция убывает на промежутках [-4; -2] и [0; 2]
Функция возрастает на промежутке x∈[-2; 0]
8. Промежутки знакопостоянства функции
y > 0 при x ∈ [-4; -3) ∪ (-1; 1)
y < 0 при x ∈ (-3; -1) ∪ (1; 2]
9. Наименьшее значение функции y=-3 при x=2
Наибольшее значение функции в точке максимума
y = 2,5 при x = 0
10. Функция не периодическая.
11. Функция общего вида ( не является ни чётной, ни нечётной).
Исследовать функцию y=f(x) по графику
1. Область определения функции
D (f) = [-4; 2]
2. Множество значений функции
E (f) = [-3; 2,5]
3. Нули функции
x₁ = -3; x₂ = -1; x₃ = 1
4. Пересечение с осью Oy - точка (0; 2,5)
5. Точки экстремумов
x = -2 - точка локального минимума функции
x = 0 - точка максимума функции
6. Экстремумы функции
y = -2 - локальный минимум функции
y = 2,5 - максимум функции
7. Промежутки монотонности функции
Функция убывает на промежутках [-4; -2] и [0; 2]
Функция возрастает на промежутке x∈[-2; 0]
8. Промежутки знакопостоянства функции
y > 0 при x ∈ [-4; -3) ∪ (-1; 1)
y < 0 при x ∈ (-3; -1) ∪ (1; 2]
9. Наименьшее значение функции y=-3 при x=2
Наибольшее значение функции в точке максимума
y = 2,5 при x = 0
10. Функция не периодическая.
11. Функция общего вида ( не является ни чётной, ни нечётной).
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².