Основание пирамиды - прямоугольник, стороны которого равны 24 дм и 15 дм. Высота пирамиды проходит через середину большей стороны основания и равна 16 дм. Вычислите площадь боковой поверхности пирамиды.
РЕШЕНИЕ:
Вначале исследуем вид каждого треугольника в боковых гранях
• Рассмотрим тр. SBC: SE - высота и медиана - по условию => тр. SBC - равнобедренный ( ВS = SC ) • SB - наклонная, SE - перпендикуляр к плоскости АВС , ВЕ - проекция наклонной SB на плоскость АВС. SE перпендикулярен ВС , ВЕ перпендикулярен АВ => по теореме о трёх перпендикулярах SB перпендикулярен АВ Значит, тр. АВS - прямоугольный Аналогично, тр. CDS - прямоугольный • тр. АВS = тр. CDS по двум катетам => AS = DS . Значит, тр. ADS - равнобедренный • В тр. ADS из вершины S на AD опустим высоту SH => AH = HD SH перпендикулярен AD , SE перпендикулярен ЕН => по теореме о трёх перпендикулярах EH перпендикулярен AD • Рассмотрим тр. SEH (угол SEH = 90°): По теореме Пифагора: SH^2 = EH^2 + SE^2 SH^2 = 15^2 + 16^2 = 225 + 256 = 481 SH = V481 дм • Рассмотрим тр. ВES (угол BES = 90°): По теореме Пифагора: ВS^2 = SE^2 + BE^2 BS^2 = 16^2 + 12^2 = 256 + 144 = 400 BS = 20 дм
Этот угол можно найти двумя
а) геометрическим,
б) векторным.
а) При этом делаем перенос отрезка ВМ в общую точку с отрезком В1С, а именно точкой В в точку С и это будет общая точка С.
Получаем треугольник В1СМ. Находим длины его сторон.
В1С = √(9 + 25) = √34,
СМ = √(4² + (3/2)² + (5/2)²) = √(16 + 2,25 + 6,25) = √24,5.
В1М = √(4² + (3+(3/2))² + (5/2)²) = √(16 + 20,25 + 6,25) = √42,5 .
Угол С (общая точка двух отрезков) находим по теореме косинусов.
cos С = ((B1C)² + CM² - (B1M)²)/(2*{B1C|*|CM|).
Подставив значения, получаем cos C = 0,277184.
Угол С равен 1,289935 радиан или 73,907817 градуса.
б) Поместим параллелепипед точкой В в начало координат, АВ по оси Ох, ВС - по оси Оу.
Координаты точек:
В1(0; 0; 5), С(0; 3; 0), вектор В1С(0; 3; -5), модуль √34.
В(0; 0; 0), М(4; 1,5; 2,5), вектор ВМ(4; 1,5; 2,5, модуль √24,5.
cos C = |(0 + 4.5 + (-12.5)|/(√34*√24.5) = 0,277184.
Угол равен 1,289935 радиан или 73,907817 градуса.
РЕШЕНИЕ:
Вначале исследуем вид каждого треугольника в боковых гранях
• Рассмотрим тр. SBC:
SE - высота и медиана - по условию => тр. SBC - равнобедренный ( ВS = SC )
• SB - наклонная, SE - перпендикуляр к плоскости АВС , ВЕ - проекция наклонной SB на плоскость АВС. SE перпендикулярен ВС , ВЕ перпендикулярен АВ => по теореме о трёх перпендикулярах SB перпендикулярен АВ
Значит, тр. АВS - прямоугольный
Аналогично, тр. CDS - прямоугольный
• тр. АВS = тр. CDS по двум катетам => AS = DS . Значит, тр. ADS - равнобедренный
• В тр. ADS из вершины S на AD опустим высоту SH => AH = HD
SH перпендикулярен AD , SE перпендикулярен ЕН => по теореме о трёх перпендикулярах EH перпендикулярен AD
• Рассмотрим тр. SEH (угол SEH = 90°):
По теореме Пифагора:
SH^2 = EH^2 + SE^2
SH^2 = 15^2 + 16^2 = 225 + 256 = 481
SH = V481 дм
• Рассмотрим тр. ВES (угол BES = 90°):
По теореме Пифагора:
ВS^2 = SE^2 + BE^2
BS^2 = 16^2 + 12^2 = 256 + 144 = 400
BS = 20 дм
S бок. = S bcs + S ads + 2 • S abs = ( 1/2 ) • 24 • 16 + ( 1/2 ) • 24 • V481 + 2 • ( 1/2 ) • 15 • 20 = 192 + 12V481 + 300 = 12V481 + 492 дм^2
ОТВЕТ: 12V481 + 492 дм^2