підставка для канцелярського приладдя має форму правильного трикутної призми без верхньої основи. периметр бічної грані цієї підставки дорівнює 40 см. знайдіть площу бічної поверхні підставки, якщо сторона її основи дорівнює 10 см
Чтобы узнать принадлежит точка окружности или нет, нужно подставить координаты точки в уравнение. А(3;4) 3^2+4^2 - 25 =0? 9+16-25=0 верно, значит точка А принадлежит окружности В(10;3) 10^2 + 3^2-25=0 100+9 -25=0 неверно, значит В не принадлежит окружности С(-1;3) (-1)^2+3^2-25=0, 1+9-25=0 неверно, С не принадлежит окружности Д(0;5) 0^2+5^2-25=0, 0+25-25=0 верно Д принадлежит окружности 2) подставим координаты центра и значение радиуса в уравнение окружности (х - 2)^2 +(y - (-3))^2=2^2, (x - 2)^2 + (y + 3)^2 = 4 - уравнение окружности. А(2; -3) (2 - 2)^2 + (-3 + 3)^2 = 4, 0+0=4 неверно, значит А не принадлежит этой окружности
Если есть стороны a b и медиана m1 к третьей стороне c, то можно ДОСТРОИТЬ этот треугольник до параллелограмма, если продолжить медиану на свою длину (за точку пересечения со стороной c), и соединить полученную точку с концами a и b. В этом параллелограмме диагонали с и 2*m1, а стороны a и b. Теперь очевидно, что a + b > 2*m1; Точно так же показывается b + c > 2*m2; a + c > 2*m3; Если сложить левые и правые части этих неравенств, получается требуемое неравенство (a + b + c) > (m1 + m2 + m3);
А(3;4) 3^2+4^2 - 25 =0? 9+16-25=0 верно, значит точка А принадлежит окружности
В(10;3) 10^2 + 3^2-25=0 100+9 -25=0 неверно, значит В не принадлежит окружности
С(-1;3) (-1)^2+3^2-25=0, 1+9-25=0 неверно, С не принадлежит окружности
Д(0;5) 0^2+5^2-25=0, 0+25-25=0 верно Д принадлежит окружности
2) подставим координаты центра и значение радиуса в уравнение окружности
(х - 2)^2 +(y - (-3))^2=2^2, (x - 2)^2 + (y + 3)^2 = 4 - уравнение окружности.
А(2; -3) (2 - 2)^2 + (-3 + 3)^2 = 4, 0+0=4 неверно, значит А не принадлежит этой окружности
В этом параллелограмме диагонали с и 2*m1, а стороны a и b.
Теперь очевидно, что a + b > 2*m1;
Точно так же показывается b + c > 2*m2; a + c > 2*m3;
Если сложить левые и правые части этих неравенств, получается требуемое неравенство (a + b + c) > (m1 + m2 + m3);