Объяснение:
Радиус окружности, описанной около треугольника ABC, равен 5. Сторона AB=5, высота BD=4. Найдите длину стороны BC.
Треугольник АВС вписан в окружность.
Сторона АВ=5 и равна радиусу этой окружности, который равен 5.
Соединив центр О окружности с концами хорды АВ, получим равносторонний треугольник АОВ.
Угол АОВ=60º
Вписанный угол ВСА равен половине центрального. опирающегося на дугу АВ.
Угол АСВ=30º
∆ ВСD- прямоугольный по условию, ВD- высота и равна 4
Катет BD противолежит углу 30º, ⇒ гипотенуза ВС треугольника ВСD равна 4*2=8.
авсd - параллелограмм.
диагонали параллелограмма точкой пересечения делятся пополам.
пусть о - точка пересечения ас и вd.
тогда о - середина ас и середина вd.
найдем координаты середины диагонали ас:
х₀ = (3 + 1)/2 = 2;
у₀ = (- 4 + 2)/2 = - 1;
z₀ = (7 + (- 3))/2 = 2.
эти же координаты имеет середина диагонали вd.
найдем координаты d(х; у; z):
(- 5 + х)/2 = 2 (3 + у)/2 = - 1 (- 2 + z)/2 = 2
- 5 + х = 2 · 2 3 + у = - 1 · 2 - 2 + z = 2 · 2
- 5 + х = 4 3 + у = - 2 - 2 + z = 4
х = 4 + 5 у = - 2 - 3 z = 4 + 2
х = 9 у = - 5 z = 6
Объяснение:
Радиус окружности, описанной около треугольника ABC, равен 5. Сторона AB=5, высота BD=4. Найдите длину стороны BC.
Треугольник АВС вписан в окружность.
Сторона АВ=5 и равна радиусу этой окружности, который равен 5.
Соединив центр О окружности с концами хорды АВ, получим равносторонний треугольник АОВ.
Угол АОВ=60º
Вписанный угол ВСА равен половине центрального. опирающегося на дугу АВ.
Угол АСВ=30º
∆ ВСD- прямоугольный по условию, ВD- высота и равна 4
Катет BD противолежит углу 30º, ⇒ гипотенуза ВС треугольника ВСD равна 4*2=8.
авсd - параллелограмм.
диагонали параллелограмма точкой пересечения делятся пополам.
пусть о - точка пересечения ас и вd.
тогда о - середина ас и середина вd.
найдем координаты середины диагонали ас:
х₀ = (3 + 1)/2 = 2;
у₀ = (- 4 + 2)/2 = - 1;
z₀ = (7 + (- 3))/2 = 2.
эти же координаты имеет середина диагонали вd.
найдем координаты d(х; у; z):
(- 5 + х)/2 = 2 (3 + у)/2 = - 1 (- 2 + z)/2 = 2
- 5 + х = 2 · 2 3 + у = - 1 · 2 - 2 + z = 2 · 2
- 5 + х = 4 3 + у = - 2 - 2 + z = 4
х = 4 + 5 у = - 2 - 3 z = 4 + 2
х = 9 у = - 5 z = 6