ответ расписывать не нужно, только ответ.
1)
Длина вектора A равна 1, а длина вектора M равна 9.
Сколько различных цельных значений может принимать длина вектора (A+M)
2)
Длина вектора A равна 4, а длина вектора (A+M) равна 11.
Сколько цельных значений может принимать длина вектора M.
3)
Площадь параллелограмма ABCD равна 36. Найдите площадь четырёхугольника ABCK ,если вектор DK= вектору BC.
4)
Длины сторон АВ и ВС параллелограмма АВСD равны соответственно 8 и 12, а его диагонали пересекаются в точке О. Найдите длину вектора ( ОA+OD).
Через две пересекающиеся прямые можно провести плоскость, притом только одну (следствие из аксиомы)
Прямые а и b пересекаются, следовательно, они лежат в одной плоскости, и эта плоскость пересекает плоскости α и β .
Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.
Следовательно, точка пересечения прямой b с плоскостью β будет лежать на прямой, параллельной прямой АD.
Проведем прямую параллельно АD.
Точка ее пересечения с прямой b будет точкой пересечения b и плоскости β.
√25²+60² = √4225 = 65
2.Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам.Значит чтобы найти вторую диагональ, нужно найти катет прямоугольного треугольника и умножить его на 2
√10²-8² =6
3..Треугольник АNВ-прямоугольный и равнобедренный, значит АN=6
Из треугольника АNС по теореме Пифагора
АС = √6²+8² =10
Площадь треугольника равна половине произведения ВС на АN
(14*8):2=56
4. Треугольник АСД прямоугольный. Угол АСД =60, значит уголД=30 Катет против угла 30° равен половине гипотенузы.АС равно половине АД, те. 12.
Аналогично из треугольника АВС ВС=6
АВ=√12²-6² = 6√3
Площадь трапеции = произведению полусуммы оснований на высоту
(6+24) : 2 *6√3 = 90√3
5. Площадь ромба - половина произведения диагоналей.
Периметр - сумма длин его сторон.
Каждую сторону можно найти как гипотенузу прямоугольного треугольника по теореме Пифагора.(Диагонали делятся пополом)
Не ленитесь, посчитайте сами
6.Высота равнобедренного треугольника является его медианой.
Найдите по теореме Пифагора половину основания , а потом и площадь треугольника, которая равна половине произведения основания на высоту.
ЖЕЛАЮ УДАЧИ!