Докажу как смогу. а) По определению, параллелограмм - четырехугольник, у которого противоположные стороны и углы равны. -у нас 4 точки. Значит это четырехугольник -тангенс угла прямой АВ, DC (tgα===1). Угол = 45 градусов тангенс угла прямой ВС, АВ (tgα===-1). Угол = - 45 градусов. Значит углы А , В, С и В (45+45) по 90 градусов. - Стороны АВ, DC равны, так как =3√2 стороны ВС, АВ равны, так как =2√2 Что и требовалось доказать. б) По определению, прямоугольник - четырехугольник у которого противоположные углы равны, а углы ВСЕ равны. Ранее было доказано, что все углы по 90 градусов и противоположные стороны равны. Значит данный четырехугольник есть прямоугольник - частный случай параллелограмма.
Точки А1 и В1 - середины сторон ∆ АСВ. Соединим их. В1А1 – срденяя линия ∆ АСВ и по свойству средней линии В1А1║ АВ.⇒
Четырехугольник АВ1А1В - трапеция, В1В и А1А - ее диагонали.
Треугольники, образованные отрезками иагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.( свойство трапеции).
Доказательство.
Рассмотрим ∆ АВ1А1 и ∆ ВВ1А1. У этих треугольников общее основание и высоты, равные высоте трапеции.
Формула площади треугольника S=a•h/2, где а - сторона треугольника, h- высота, проведенная к ней.
Если основания и высоты треугольников равны, их площади равны.
∆ АВ1А1= ∆ АВ1О+∆ В1ОА1
∆ ВВ1А1= ∆ ВОА1+∆ В1ОА1
Два треугольника с равной площадью состоят из частей, одна из которых - одна и та же. Следовательно, площади вторых частей этих треугольников равны.
S ∆ АОВ1=S∆ ВОА1, ч.т.д.
---------
Вариант – более короткое решение.
Каждая медиана треугольника делят его на два равновеликих ( равные высоты и основания).
S∆ ВCВ1=S ∆ АСА1=S ∆ АВС:2
Сумма площадей ∆ АОВ1+четырехугольника В1СА1О равна сумме площадей ∆ ВОА1+четырехугольника В1СА1О, равна половине площади ∆ АВС, из чего следует равенство площадей треугольников АВ1О и А1ВО
а) По определению, параллелограмм - четырехугольник, у которого противоположные стороны и углы равны.
-у нас 4 точки. Значит это четырехугольник
-тангенс угла прямой АВ, DC (tgα===1). Угол = 45 градусов
тангенс угла прямой ВС, АВ (tgα===-1). Угол = - 45 градусов.
Значит углы А , В, С и В (45+45) по 90 градусов.
- Стороны АВ, DC равны, так как =3√2
стороны ВС, АВ равны, так как =2√2
Что и требовалось доказать.
б) По определению, прямоугольник - четырехугольник у которого противоположные углы равны, а углы ВСЕ равны.
Ранее было доказано, что все углы по 90 градусов и противоположные стороны равны. Значит данный четырехугольник есть прямоугольник - частный случай параллелограмма.
Четырехугольник АВ1А1В - трапеция, В1В и А1А - ее диагонали.
Треугольники, образованные отрезками иагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.( свойство трапеции).
Доказательство.
Рассмотрим ∆ АВ1А1 и ∆ ВВ1А1. У этих треугольников общее основание и высоты, равные высоте трапеции.
Формула площади треугольника S=a•h/2, где а - сторона треугольника, h- высота, проведенная к ней.
Если основания и высоты треугольников равны, их площади равны.
∆ АВ1А1= ∆ АВ1О+∆ В1ОА1
∆ ВВ1А1= ∆ ВОА1+∆ В1ОА1
Два треугольника с равной площадью состоят из частей, одна из которых - одна и та же. Следовательно, площади вторых частей этих треугольников равны.
S ∆ АОВ1=S∆ ВОА1, ч.т.д.
---------
Вариант – более короткое решение.
Каждая медиана треугольника делят его на два равновеликих ( равные высоты и основания).
S∆ ВCВ1=S ∆ АСА1=S ∆ АВС:2
Сумма площадей ∆ АОВ1+четырехугольника В1СА1О равна сумме площадей ∆ ВОА1+четырехугольника В1СА1О, равна половине площади ∆ АВС, из чего следует равенство площадей треугольников АВ1О и А1ВО