Отрезки ac и bd пересекаются в точке о, причём ao=15 см, bo=6см, co=5см, do=18см а) доказать, что четырёхугольник abcd трапеция б) найдите отношение площадей треугольников aod и boc.
Предположим, что это так, значит тр. ВОС и тр. АОД подобны значит ВО/ОД=СО/ОА, 6/12=5/15, 3=3, значит треуг. действительно подобны (по двум сторонам и углу между ними), значит 3*SВОС=SАОД из следствия подобия треугольников угол ВСО = углу ОАД, углы являются накрест лежащими при прямых ВC и AD, значит ВС// AД, следовательно по признаку AВCД- трапеция.
т.к отношение площадей треугольников равно квадрату коэффициента подобия, то к=3,а SАОД /SВОС=3^2, т.е 9
Предположим, что это так, значит тр. ВОС и тр. АОД подобны
значит ВО/ОД=СО/ОА, 6/12=5/15, 3=3, значит треуг. действительно подобны (по двум сторонам и углу между ними), значит 3*SВОС=SАОД из следствия подобия треугольников угол ВСО = углу ОАД, углы являются накрест лежащими при прямых ВC и AD, значит ВС// AД, следовательно по признаку AВCД- трапеция.
т.к отношение площадей треугольников равно квадрату коэффициента подобия, то к=3,а SАОД /SВОС=3^2, т.е 9