Все задачи на проверку формул. поэтому рисунки не строю.
1.В основании лежит правильный треугольник его периметр равен 3*2=6/см/, чтобы найти ребро призмы, надо площадь бок. поверхности разделить на периметр основания. 66/6=11/см/
2. Площадь боковой поверхности равна произведению периметра основания на высоту. Периметр основания 4*4=16/см/, значит, площадь бок. поверхности равна 16*12=192/см²/, площадь основания равна 4²=16/см²/
Площадь полной поверхности равна
sполн. =2sосн.+sбок.=2*16+192=32+192=224/см²/
3. по формуле для длины диагонали d=√(a²+b²+c²)
a=3; b=4; c=5.
d=√(3²+4²+5²)=√(9+16+25)=√50=5√2
площадь поверхности равна 2*(3*4+3*5+4*5)=2*(12+15+20)=94/см²/
ответ А решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3
Все задачи на проверку формул. поэтому рисунки не строю.
1.В основании лежит правильный треугольник его периметр равен 3*2=6/см/, чтобы найти ребро призмы, надо площадь бок. поверхности разделить на периметр основания. 66/6=11/см/
2. Площадь боковой поверхности равна произведению периметра основания на высоту. Периметр основания 4*4=16/см/, значит, площадь бок. поверхности равна 16*12=192/см²/, площадь основания равна 4²=16/см²/
Площадь полной поверхности равна
sполн. =2sосн.+sбок.=2*16+192=32+192=224/см²/
3. по формуле для длины диагонали d=√(a²+b²+c²)
a=3; b=4; c=5.
d=√(3²+4²+5²)=√(9+16+25)=√50=5√2
площадь поверхности равна 2*(3*4+3*5+4*5)=2*(12+15+20)=94/см²/
решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3