основою трикутної піраміди є рівнобедренний трикутник з бічною стороною b i кутом а при вершині.усі бокові грані нахилені до площини основи під кутомгама . знайдіть площу повної поверхні піраміди
ответ 14,4 см. Раз биссектриса перпендикулярна, значит она является ещё и медианой и делит сторону пополам. Тогда ВС = 4,8 см (т. к. ВМ - половина). Треугольник равносторонний, т. к. ещё сказано, что высота ВК, проведённая к АС, делит сторону пополам, а, следовательно, является медианой. Если мы проведём из точки С ещё одну высоту, то она также будет являться медианой и биссектрисой. И все три биссектрисы (или высота и медианы) пересекуться в одной точке. Чтобы найти периметр надо просто 4,8 умножить на 3. Получим 14,4 см.
Проведем из вершины В треугольника АВС высоту ВН к основанию АС.
Так как, по условию, АВ = ВС, то треугольник АВС равнобедренный, а высота ВН в равнобедренном треугольника, так же является и медианой. Тогда АД = СД = АС / 2 = 12 / 2 = 6 см.
Рассмотрим прямоугольный треугольник АВД, и по теореме Пифагора определим длину катета ВН.
ВН2 = АВ2 – АД2 = 100 – 36 = 64.
ВН = 8 см.
Рассмотрим треугольный треугольник ДВН и по теореме Пифагора определим длину гипотенузы ДН.
ДН2 = ДВ2 + ВН2 = 152 + 82 = 225 + 64 = 289.
ДН = 17 см.
ответ: Расстояние от точки Д до прямой АС равно 17 см.
Проведем из вершины В треугольника АВС высоту ВН к основанию АС.
Так как, по условию, АВ = ВС, то треугольник АВС равнобедренный, а высота ВН в равнобедренном треугольника, так же является и медианой. Тогда АД = СД = АС / 2 = 12 / 2 = 6 см.
Рассмотрим прямоугольный треугольник АВД, и по теореме Пифагора определим длину катета ВН.
ВН2 = АВ2 – АД2 = 100 – 36 = 64.
ВН = 8 см.
Рассмотрим треугольный треугольник ДВН и по теореме Пифагора определим длину гипотенузы ДН.
ДН2 = ДВ2 + ВН2 = 152 + 82 = 225 + 64 = 289.
ДН = 17 см.
ответ: Расстояние от точки Д до прямой АС равно 17 см.