Основою прямої призми є прямокутний трикутник, катети якого дорівнюють 6 см і 8 см. Знайдіть діагональ найбільшої бічної грані призми, якщо ії висота дорівнює √21
Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
1) Точки С делит отрезок АВ в отношении пять к трем считая от точки А, значит ВС:СА=3:5, значит ВС:ВА=3:8. Координаты ВА ( -9-11;-6-0). ВА(-20;-6), тогда ВС=3/8ВА. ВС=(3/8*(-20);3/8*(-6)), ВС(-15/2;-9/4).
Имеем В(-9;-6), ВС(-15/2;-9/4), то С( -15/2-9;-9/4-6), С(-16,5;-33/4)
Примечание: Координаты вектора правильно писать в фигурных скобках, а коордитнты точки- в круглых
2) Точки С делит отрезок АВ в отношении пять к трем считая от точки В, значит ВС:СА=5:3, значит ВС:ВА=5:8. Координаты ВА ( -9-11;-6-0). ВА(-20;-6), тогда ВС=5/8ВА. ВС=(5/8*(-20);5/8*(-6)), ВС(-25/2;-15/4).
Имеем В(-9;-6), ВС(-25/2;-15/4), то С( -25/2-9;-15/4-6), С(-21,5;-39/4)
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0
С(-16,5;-33/4) или С(-21,5;-39/4)
Объяснение:
1) Точки С делит отрезок АВ в отношении пять к трем считая от точки А, значит ВС:СА=3:5, значит ВС:ВА=3:8. Координаты ВА ( -9-11;-6-0). ВА(-20;-6), тогда ВС=3/8ВА. ВС=(3/8*(-20);3/8*(-6)), ВС(-15/2;-9/4).
Имеем В(-9;-6), ВС(-15/2;-9/4), то С( -15/2-9;-9/4-6), С(-16,5;-33/4)
Примечание: Координаты вектора правильно писать в фигурных скобках, а коордитнты точки- в круглых
2) Точки С делит отрезок АВ в отношении пять к трем считая от точки В, значит ВС:СА=5:3, значит ВС:ВА=5:8. Координаты ВА ( -9-11;-6-0). ВА(-20;-6), тогда ВС=5/8ВА. ВС=(5/8*(-20);5/8*(-6)), ВС(-25/2;-15/4).
Имеем В(-9;-6), ВС(-25/2;-15/4), то С( -25/2-9;-15/4-6), С(-21,5;-39/4)