Основою піраміди є ромб зі стороною 8 см і кутом 30° кожний з двогранних кутів піраміди при ребрах дорівнює 45° знайдіть площу бічної поверхні піраміди
Проведём А₁К перпендикулярно АС, СМ параллельно А₁К, СМ перпендикуляр к АС и ВС перпендикуляр к АС, значит угол МСВ- линейный угол двугоранного угла между плоскостями АСС₁А и АВС. Угол МСВ=90⁰ , АС перпендикуляр к ВС, АК- проекция АА₁ , по теореме о трех перпендикулярах АА₁ перпендикуляр к ВС. Значит и СС₁ перпендикуляр в ВС. Четырехугольник ВВ₁С₁С- прямоугольник. Его площадь равна 56. Катет ВС=7, значит боковые ребра призмы 8 7*8=56 Из прямоугольного треугольника АА₁К зная угол А₁АК=45⁰ ( по условию) найдем высоту А₁К=4√2
Цитата: "Если в трапецию вписана окружность с радиусом г и она делит боковую сторону точкой касания на два отрезка — а и b, — то г=√а*Ь". Следовательно, радиус вписанной в трапецию окружности равен: R=√(16*1)=4. Теперь легко находим величину отрезка ND. Поскольку отрезок МВ = ВК, а КС= CN (как касательные к окружности, проведенные из одной точки), то ВК=1, КС=3-1=2 и СN=КС=2.Тогда из г =√а*b имеем: 4=√(2*DN) или 1б=2*DN, откуда DN=8. ON перпендикулярна СD как радиус к касательной СD в точке касания. Из прямоугольного треугольника OND пo Пифагору найдем OD=√(ON+ND)=√(16+64) =√80 = 4√5. Прoведем QP параллельно СD. Треугольники ОDN и ОQP подобны. Из их подобия имеем: ОD/OQ=ON/ОР. Подставим известные величины: OD= 4√5, ON=R=4, ОР=ON-NP=R-r=4-r, OQ=R+г= 4+г. Тогда соотношение примет вид: 4√5/(4+г) = 4√(4-г), откуда г=4*[(√5-1)/(√5+1)]. Или г=1,53. ответ в приложенном рисунке. Извиняюсь за его качество.
Треугольник АВС - прямоугольный равнобедренный, АВ=ВС=7.
Плоскость (АСС₁А₁) перпендикулярна плоскости АВС.
Проведём А₁К перпендикулярно АС, СМ параллельно А₁К,
СМ перпендикуляр к АС и ВС перпендикуляр к АС, значит угол МСВ- линейный угол двугоранного угла между плоскостями АСС₁А и АВС.
Угол МСВ=90⁰
,
АС перпендикуляр к ВС, АК- проекция АА₁ , по теореме о трех перпендикулярах АА₁ перпендикуляр к ВС.
Значит и СС₁ перпендикуляр в ВС. Четырехугольник ВВ₁С₁С- прямоугольник. Его площадь равна 56. Катет ВС=7, значит боковые ребра призмы 8
7*8=56
Из прямоугольного треугольника АА₁К зная угол А₁АК=45⁰ ( по условию) найдем высоту А₁К=4√2
V=S·H=1/2 АС·ВС·А₁К=1/2·7·7·4√2=98√2 кв ед.
ответ в приложенном рисунке. Извиняюсь за его качество.