Теорема Фалеса гласит, что если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.
То есть, так как CN=ND и BC||KN, отрезки BK и KD равны.
Следовательно KN средняя линия треугольника BCD. А средняя линия треугольника равна половине параллельной стороны. Параллельная сторона KN это BC. BC=6, поэтому KN=6/2=3. Меньший отрезок равен 3.
По тем же свойствам, что и сверху MK средняя линия треугольника ABD и равна половине AD. AD=20.
ответ:вот
Объяснение:
AD=20, BC=6, BM=AM, CN=ND.
Теорема Фалеса гласит, что если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.
То есть, так как CN=ND и BC||KN, отрезки BK и KD равны.
Следовательно KN средняя линия треугольника BCD. А средняя линия треугольника равна половине параллельной стороны. Параллельная сторона KN это BC. BC=6, поэтому KN=6/2=3. Меньший отрезок равен 3.
По тем же свойствам, что и сверху MK средняя линия треугольника ABD и равна половине AD. AD=20.
MK=20/2=10
Больший отрезок равен 10