Очень нечетко сформулированное условие. При пересечении трех прямых образуется 3 пары равных между собой вертикальных углов. Так как угол КАМ равен 90°, то значит прямые КL и MN взаимно перпендикулярны. Поэтому ∠KAN=∠LAN=∠MAL=∠KAM=90°. Условие "угол КАР: MAQ=4 : 5" дано для того, чтобы знать, как провести прямую PQ. ( cм. рис. 1) Если PQ проведена так как на рисунке 1, обозначим
∠KAP=4x; ∠MAQ=5x, тогда ∠KAQ=4x-90°;∠MAP=5x-90°; ∠KAQ+∠KAM+∠MAP=180°; 4x-90°+90°+5x-90°=180°. 9x=270° x=30° ∠KAP=4·30°=120°; ∠MAQ=5·30°=150°; значит ∠МАР=∠QAN=30°; ∠PАL=∠QAK=60° и ∠PАL:∠LАN=60°:90°=2:3 Условие "один из углов 80°" не выполняется.
Если прямая PQ расположена так как на рисунке 2. Аналогично случаю 1 обозначим ∠KAP=4x; ∠MAQ=5x, получаем невозможное∠KAP=4·30°=120°, а на рисунке угол ∠KAP- острый . Требуется дополнительное условие. Оно есть "один из углов 80°". Какой? Если ∠KAP=80°, тогда ∠MAQ=100° а на рисунке 2, угол ∠MAQ=180°-10°=170°.
Значит, нужен третий рисунок.
∠MAQ=80°,∠MAQ=5x. х=16° ∠KAP=4x=4·16°=64° Но тогда не выполняется условие "два других относятся как 2:3".
Полупериметр АВ+ВС=42/2=21 пусть АВ=х тогда ВС=21-х ΔАВС - прямоугольный по теореме Пифагора: х²+(21-х)²=(√221)² х²+(441-42х+х²)=221 х²+441-42х+х²-221=0 2х²-42х-220=0 х²-21х-110=0 Д=(-21)²-4*1*(-110)=441-440=1 х1=(21+1)/2=22/2=11 х2=(21-1)/2=20/2=10 если АВ=10, то ВС=21-10=11 если АВ=11, то ВС=21-11=10 ⇒ в любом случае одна сторона 10, другая 11 пусть АВ=10, а ВС=11 проведем высоту ВН есть формула: высота, опущенная на гипотенузу равна произведению катетов , деленному на гипотенузу т.е. ВН=(АВ*ВС)/АС=(10*11)/√221=110/√221 рассмотрим ΔАВС его площадь S(АВС)=(ВН*АС)/2=((110/√221)*√221)/2=110/2=55 ΔАВС=ΔАСД ⇒ S(АВСД)=S(АВС)+S(АСД)=55+55=110
При пересечении трех прямых образуется 3 пары равных между собой вертикальных углов.
Так как угол КАМ равен 90°, то значит прямые КL и MN взаимно перпендикулярны.
Поэтому ∠KAN=∠LAN=∠MAL=∠KAM=90°.
Условие "угол КАР: MAQ=4 : 5" дано для того, чтобы знать, как провести прямую PQ. ( cм. рис. 1)
Если PQ проведена так как на рисунке 1, обозначим
∠KAP=4x; ∠MAQ=5x, тогда
∠KAQ=4x-90°;∠MAP=5x-90°;
∠KAQ+∠KAM+∠MAP=180°;
4x-90°+90°+5x-90°=180°.
9x=270°
x=30°
∠KAP=4·30°=120°; ∠MAQ=5·30°=150°;
значит ∠МАР=∠QAN=30°;
∠PАL=∠QAK=60° и
∠PАL:∠LАN=60°:90°=2:3
Условие "один из углов 80°" не выполняется.
Если прямая PQ расположена так как на рисунке 2.
Аналогично случаю 1 обозначим
∠KAP=4x; ∠MAQ=5x, получаем невозможное∠KAP=4·30°=120°, а на рисунке угол ∠KAP- острый .
Требуется дополнительное условие.
Оно есть "один из углов 80°". Какой?
Если ∠KAP=80°, тогда ∠MAQ=100°
а на рисунке 2, угол ∠MAQ=180°-10°=170°.
Значит, нужен третий рисунок.
∠MAQ=80°,∠MAQ=5x. х=16°
∠KAP=4x=4·16°=64°
Но тогда не выполняется условие "два других относятся как 2:3".
пусть АВ=х
тогда ВС=21-х
ΔАВС - прямоугольный
по теореме Пифагора:
х²+(21-х)²=(√221)²
х²+(441-42х+х²)=221
х²+441-42х+х²-221=0
2х²-42х-220=0
х²-21х-110=0
Д=(-21)²-4*1*(-110)=441-440=1
х1=(21+1)/2=22/2=11
х2=(21-1)/2=20/2=10
если АВ=10, то ВС=21-10=11
если АВ=11, то ВС=21-11=10
⇒ в любом случае одна сторона 10, другая 11
пусть АВ=10, а ВС=11
проведем высоту ВН
есть формула: высота, опущенная на гипотенузу равна произведению катетов , деленному на гипотенузу т.е.
ВН=(АВ*ВС)/АС=(10*11)/√221=110/√221
рассмотрим ΔАВС
его площадь S(АВС)=(ВН*АС)/2=((110/√221)*√221)/2=110/2=55
ΔАВС=ΔАСД
⇒ S(АВСД)=S(АВС)+S(АСД)=55+55=110