Основанием тетраэдра SABC является равнобедренный прямоугольный треугольник ABC, у которого AB=3 см, угол ABC = 90. боковое ребро SB, длина которого равно 6 см, перпендикулярно плоскости основания. Вычислите расстояние от середины ребра SB до прямой AC
В тетраэдре DАВС точки P,М,Q,N – середины ребер DВ, DС, АС, АВ соответственно. РQ =NM = 15cм, ВC = 18cм. Докажите, что NPMQ – прямоугольник. Найдите длину отрезка DА.
Объяснение:
1) ΔABD ,NP-средняя линия ⇒NP=1/2*AD и NP║AD;
2) ΔAСD ,MQ-средняя линия ⇒MQ=1/2*AD и MQ║AD; Получили NP=MQ и NP║MQ.
Учитывая 1 и 2 получаем, что MPNQ- параллелограмм , тк противоположные стороны равны и параллельны .Учитывая , что
РQ =NM (признак прямоугольника), получаем , что NPMQ – прямоугольник.
Отрезок DA=1/2*MQ по т. о средней линии треугольника. Отрезок MQ найдем из ΔАВС по т. о средней линии треугольника: MQ=1/2*ВС=1/2*18=9 (см).
ΔMQР-прямоугольный , по т. Пифагора MQ=√(15²-9²)=12(см)⇒DA=6 cм
KB = 10
Объяснение:
Судя по описанию, это - правильная треугольная пирамида.
Нам нужно найти боковое ребро пирамиды
(см. рисунок)
Для начала найдём расстояние от центра треугольника, до любой из его вершин с формулы для нахождения радиуса описанной около правильного треугольника окружности:
R=a/√3 , где a - сторона, равная по условию 6√3
Подставляем R=6√3/√3 = 6 - наш нижний катет прямоугольного треугольника KOB(к примеру)
Теперь нам известны два катета: KO или высота = 8,
OB = 6
Найдём гипотенузу KB с теоремы Пифагора:
KB=√(6²+8²) = √(36+64) = √100 = 10