ответ:1) ответ:
AC = 5 · tgα
CD = 5 · tgα · sinβ
2)Если эти две стороны катеты, то по теореме Пифагора гипотенуза будет равна
Так же возможно, что 7 см - это гипотенуза, а 4 см - это катет, тогда второй катет
3)В прямоугольном треугольнике катет, лежащий против угла 30°, равен половине гипотенузы.
Катет ВС лежит против угла 30°, следовательно
АВ = 2ВС = 2 * 18 = 36 (см)
4)ответ:
AC=16 S=96
Объяснение:
Диагонали ромба точкой пересечения делятся пополам и взаимно перпендикулярны, значит AO=OC, BO=OD (О - точка пересечения диагоналей)
В прямоугольном треугольнике AOB АО^2=AB^2-BO^2
AO^2=100-36=64 AO=8, значит AC=16
S = 1/2*BD*AC=1/2*16*12=96
Объяснение:Как то так)))если что я тот гоголь которого ты просил
DE||AC, DE=AC/2 (средняя линия)
∠ADE+∠DAC=180 (внутренние углы при параллельных)
Пусть биссектрисы углов ADE и DAC пересекаются в точке X.
∠ADX+∠DAX =90 => ∠AXD=90
Из точки D можно опустить только один перпендикуляр к прямой AI =>
точки X и I совпадают => DI - биссектриса ∠ADE
В трапеции ADEC биссектрисы трех углов пересекаются в одной точке - трапеция описанная (т.е. имеет вписанную окружность).
В описанном четырехугольнике суммы противоположных сторон равны.
AD+CE =AC+DE
DE =AC/2 =0,5 => AC+DE =1,5 =AD+CE
AB+BC =2(AD+CE) =2*1,5 =3
P(ABC) =AB+BC+AC =3+1 =4
ответ:1) ответ:
AC = 5 · tgα
CD = 5 · tgα · sinβ
2)Если эти две стороны катеты, то по теореме Пифагора гипотенуза будет равна
Так же возможно, что 7 см - это гипотенуза, а 4 см - это катет, тогда второй катет
3)В прямоугольном треугольнике катет, лежащий против угла 30°, равен половине гипотенузы.
Катет ВС лежит против угла 30°, следовательно
АВ = 2ВС = 2 * 18 = 36 (см)
4)ответ:
AC=16 S=96
Объяснение:
Диагонали ромба точкой пересечения делятся пополам и взаимно перпендикулярны, значит AO=OC, BO=OD (О - точка пересечения диагоналей)
В прямоугольном треугольнике AOB АО^2=AB^2-BO^2
AO^2=100-36=64 AO=8, значит AC=16
S = 1/2*BD*AC=1/2*16*12=96
Объяснение:Как то так)))если что я тот гоголь которого ты просил
DE||AC, DE=AC/2 (средняя линия)
∠ADE+∠DAC=180 (внутренние углы при параллельных)
Пусть биссектрисы углов ADE и DAC пересекаются в точке X.
∠ADX+∠DAX =90 => ∠AXD=90
Из точки D можно опустить только один перпендикуляр к прямой AI =>
точки X и I совпадают => DI - биссектриса ∠ADE
В трапеции ADEC биссектрисы трех углов пересекаются в одной точке - трапеция описанная (т.е. имеет вписанную окружность).
В описанном четырехугольнике суммы противоположных сторон равны.
AD+CE =AC+DE
DE =AC/2 =0,5 => AC+DE =1,5 =AD+CE
AB+BC =2(AD+CE) =2*1,5 =3
P(ABC) =AB+BC+AC =3+1 =4