Рассуждаем. Если один острый угол этого треугольника = 60 градусов, то другой острый угол = 90-60 = 30 градусов. Меньший катет тот, что лежит напротив меньшего острого угла. То есть это катет, который лежит против угла в 30 градусов. Вспомним свойство о том, что катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Тогда можно составить уравнение.
Средняя линия трапеции параллельна основаниям и равна их полусумме. Доказательство. Пусть дана трапеция АВСD и средняя линия КМ. Через точки В и М проведем прямую. Продолжим сторону AD через точку D до пересечения с ВМ. Треугольники ВСм и МРD равны по стороне и двум углам (СМ=МD, РВСМ=РМDР - накрестлежащие, РВМС=РDМР - вертикальные) , поэтому ВМ=МР или точка М - середина ВР. КМ является средней линией в треугольнике АВР. По свойству средней линии треугольника КМ параллельна АР и в частности АD и равна половине АР:
Дано:
Прям. тр. с острым углом в 60 градусов;
Сумма гипотенузы и катета = 42см.
Найти:
Гипотенуза.
Рассуждаем. Если один острый угол этого треугольника = 60 градусов, то другой острый угол = 90-60 = 30 градусов. Меньший катет тот, что лежит напротив меньшего острого угла. То есть это катет, который лежит против угла в 30 градусов. Вспомним свойство о том, что катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Тогда можно составить уравнение.
2х+х=42
х=42:3
х=14
ответ: 14.
Если катет = 14см, то гипотенуза = 14*2 = 28см.
ответ: 28см.
Доказательство. Пусть дана трапеция АВСD и средняя линия КМ. Через точки В и М проведем прямую. Продолжим сторону AD через точку D до пересечения с ВМ. Треугольники ВСм и МРD равны по стороне и двум углам (СМ=МD, РВСМ=РМDР - накрестлежащие, РВМС=РDМР - вертикальные) , поэтому ВМ=МР или точка М - середина ВР. КМ является средней линией в треугольнике АВР. По свойству средней линии треугольника КМ параллельна АР и в частности АD и равна половине АР:
КМ = 1/2АР=1/2(АD+DF)=1/2(AD+BC)
рисунок не забудь,