Основание прямой призмы — ромб с острым углом 60°, высота призмы равна 16 см.
Цилиндр с боковой поверхностью 192π см² вписан в призму.
Определи площадь боковой поверхности призмы.
(Если в ответе нет корня, под знаком корня пиши 1.)
ответ: Sпр.=
−−−−−√(см2).
АD - это высота треугольника ABC, AB и AC - это катеты треугольника, а BC - гипотенуза. Высота AD делит гипотенузу BC на две части. Чтобы найти катет AC, нужно найти гипотенузу BC. Рассмотрим прямоугольный треугольник ADB. По теореме Пифагора BD^2 = AB^2 - AD^2 = 20^2 - 12^2 = 400 - 144 = 256, следовательно, BD = 16 (т.е. корень квадратный из 256). BC = BD + DC = 16 + DC. По теореме Пифагора AC^2 = AD^2 + DC^2 = 12^2 +DC^2 = 144 + DC^2. Рассмотрим прямоугольный треугольник CAB. По теореме Пифагора AC^2 = BC^2 - AB^2 = BC^2 - 20^2 = BC^2 - 400 = (16+DC)^2 -400 = 256 + 32 DC + DC^2 -400 = DC^2 + 32 DC - 144. Получаем, что AC^2 = 144 + DC^2 и AC^2 = DC^2 + 32 DC - 144. Приравняем правые части этих равенств, получим, 144 + DC^2 = DC^2 + 32 DC - 144. Откуда получаем 32 DC = 288, следовательно, DC = 9. Т. к. BC = BD + DC, то BC = 16 + 9 = 25. Тогда по теореме Пифагора AC^2 = BC^2 - AB^2 = 25^2 - 20^2 = 625 - 400 = 225, значит, AC = 15.
Теперь найдём косинус угла С. По определению, cosC=AC/BC=15/25=3/5
ответ:cosC=AC/BC=15, AC = 15
значек^ это в квадрат
1) нарисуй треугольник ABC, где - AB -твой отрезок, BC -перпендикулярно плоскости, AC - параллельно плоскости, далее дорисуй его до прямоугольника добавив точку K, тем самым получив диагональ KC.
точка A удалена на 2,4 м, точка B удалена на 7,6 м
длина BC равна 7,6 - 2,4 = 5,2
в прямоугольнике точка пересечения диагоналей будет точкой М и расстояние от точки M до стороны AC будет равно половине длины стороны BC, то есть 5,2 / 2 = 2,6
тогда искомое расстояние равно 2,6 + 2,4 = 5 м
2) рисуем аналогично треугольник, длина стороны параллельной столбам равна разности 6 - 3 = 3 м, далее по теореме Пифагора - 5^2 = 3^2 + x^2
отсюда, x^2 = 25-9 = 16, х = 4
3) тут долго объяснять, смотри выше)
Успехов!