Осевое сечение конуса – прямоугольный, равнобедренный треугольник, с углами 90°, 45°, 45° Гипотенуза которого, является диаметром основания цилиндра и равна х, тогда r=0,5x Высота, проведенная к основанию, является медианой и биссектрисой и разбивает осевое сечение на два равных треугольника и равна H=х√3/2 Гипотенуза треугольника, она же образующая L=r/cos45°=r√2=x*√2/2 Sб= πRl = π*0,5x* x*√2/2 = π* x²*√2/4 Sпп= Sб+Sосн= π* x²*√2/4 + x²/2= π* x²*(√2+2)/4 Sпп/ Sб=( π* x²*(√2+2)/4)/( π* x²*√2/4)=1+ √2
Гипотенуза которого, является диаметром основания цилиндра и равна х,
тогда r=0,5x
Высота, проведенная к основанию, является медианой и биссектрисой и разбивает осевое сечение на два равных треугольника и равна
H=х√3/2
Гипотенуза треугольника, она же образующая
L=r/cos45°=r√2=x*√2/2
Sб= πRl = π*0,5x* x*√2/2 = π* x²*√2/4
Sпп= Sб+Sосн= π* x²*√2/4 + x²/2= π* x²*(√2+2)/4
Sпп/ Sб=( π* x²*(√2+2)/4)/( π* x²*√2/4)=1+ √2
ответ:
1. аа₁ - биссектриса,
вв₁ - медиана,
сс₁ - высота.
2. ав = св,
∠аве = ∠све,
ве - общая сторона.
δаве = δсве по 1 признаку (по двум сторонам и углу между ними).
3. ∠вас = 180° - ∠1 по свойству смежных углов.
∠вас = 180° - 110° = 70°.
в равнобедренном треугольнике углы при основании равны, значит
∠вса = вас = 70°
∠bdc = 90°, так как в равнобедренном треугольнике медиана, проведенная к основанию, является высотой.
4. ом = ок по условию,
∠dmo = ∠bko по условию,
∠dom = ∠bok как вертикальные, значит
δdmo = δbko по стороне и двум прилежащим к ней углам.
в равных треугольниках напротив равных сторон лежат равные углы, значит ∠mdo = ∠kbo, а так же od = ob.
треугольник dob равнобедренный, значит углы при основании равны:
∠odb = ∠obd.
∠mdb = ∠mdo + ∠odb
∠kbd = ∠kbo + ∠obd, а так как ∠mdo = ∠kbo и ∠odb = ∠obd, то
∠mdb = ∠kbd, т.е. ∠d = ∠b
объяснение:
это ответы на этот сор