Основа прямого параллелепипеда - ромб со стороной 6 см и острым углом 60 градусов. Меньшая диагональ параллелепипеда наклонена к основанию под углом 45 градусов. Найдите обьем
1. сначала рисуем основание и от одного из его концов, с циркуля, в сторону направления второй стороны, рисуем полукруг, равный по радиусу этой известной стороне. 2. Затем с циркуля с двух концов основания восстанавливаем перпендикуляры к самому основанию (как это делать Вы знаете). 3. С линейки отмеряем известную высоту на обоих перпендикулярах, начиная от основания. 4 Соединяем вершины высот прямой линией с линейки. Полученная линия параллельна основанию. 5. Место пересечения этой линии и полуокружности - это вершина нужного треугольника. Соединим её с концами основания. 6. С циркуля нарисуем второй полукруг к вершине от другого конца основания так, чтобы оба полукруга пересекались сверху и снизу. Соединим точки их пересечения. Получится высота треугольника.
Если прямая, не лежащая в плоскости, параллельна прямой, лежащей в плоскости, то она параллельна и самой плоскости.
Доказательство:
Пусть прямая b параллельна прямой а, лежащей в плоскости α. Докажем, что прямая b параллельна плоскости α.
Через две параллельные прямые можно провести единственную плоскость. Проведем плоскость β через прямые а и b.
Так как прямая а лежит в двух плоскостях, то она является линией пересечения плоскостей.
Предположим, что прямая b не параллельна плоскости α, т.е. пересекает ее. Тогда точка пересечения лежит на прямой а (на линии пересечения плоскостей), но тогда b пересекает прямую а, а это противоречит условию.
2. Затем с циркуля с двух концов основания восстанавливаем перпендикуляры к самому основанию (как это делать Вы знаете).
3. С линейки отмеряем известную высоту на обоих перпендикулярах, начиная от основания.
4 Соединяем вершины высот прямой линией с линейки. Полученная линия параллельна основанию.
5. Место пересечения этой линии и полуокружности - это вершина нужного треугольника. Соединим её с концами основания.
6. С циркуля нарисуем второй полукруг к вершине от другого конца основания так, чтобы оба полукруга пересекались сверху и снизу. Соединим точки их пересечения. Получится высота треугольника.
Верно.
Объяснение:
Это признак параллельности прямой и плоскости:
Если прямая, не лежащая в плоскости, параллельна прямой, лежащей в плоскости, то она параллельна и самой плоскости.
Доказательство:
Пусть прямая b параллельна прямой а, лежащей в плоскости α. Докажем, что прямая b параллельна плоскости α.
Через две параллельные прямые можно провести единственную плоскость. Проведем плоскость β через прямые а и b.
Так как прямая а лежит в двух плоскостях, то она является линией пересечения плоскостей.
Предположим, что прямая b не параллельна плоскости α, т.е. пересекает ее. Тогда точка пересечения лежит на прямой а (на линии пересечения плоскостей), но тогда b пересекает прямую а, а это противоречит условию.
Значит b║α. Что и требовалось доказать.