то, что еще совсем недавно казалось новым и неизведанным, сегодня уже неактуально.
мы покоряем космос уже не в околоземном пространстве, а отправляем свои исследовательские мини-станции на марс, ведется разведка сатурна, юпитера и титана.
когда-то об этом можно было прочесть только в фантастических книгах. например, идеи романов жюль верна, такие как подводная лодка, стали реальностью в 20-м веке. настало время реализации самых смелых фантазий современности.
человек исследует океанское дно с сверхсложной аппаратуры и в онлайн-режиме это могут наблюдать миллионы пользователей интернета. паутина стала всеобъемлющим пространством, которое объединило все и вся.
люди из разных уголков нашей планеты свободно общаются в режиме реального времени друг с другом, обмениваются фото-, видеозаписями, мнениями, насущные вопросы.
все большее число людей могут с уверенностью заявить, что 21 век — век информационных технологий, потому что эти самые технологии не отпускают их в реальную жизнь.
Совершим параллельный перенос точки A вдоль прямой AB к середине AB. Обозначим ее как N. Поскольку AB || CD, а CD⊂(SCD), расстояние от A до (SCD) равно расстоянию от точки N до плоскости (SCD). На грани SCD проведем апофему (высоту из S). Она пересечет CD в точке M. Точка M является серединой CD, так как пирамида правильная (из этого следует, что SCD равнобедренный). NM || AD. Соответственно, в полученном треугольнике SNM высота из N на сторону SM будет являться перпендикуляром из N на плоскость (SCD), то есть длина высоты в треугольнике SNM из вершины N является искомым расстоянием. Рассмотрим треугольник SNM. Это равнобедренный треугольник, где SN = SM. Пусть O - проекция вершины пирамиды на плоскость основания пирамиды. Так как пирамида правильная, O является серединой NM, а SO - высотой треугольника SNM из вершины S. По условию, SO = 4 см, AD = 6 см. Так как AD = NM = 2OM, то OM = 6 см / 2 = 3 см. Из прямоугольного треугольника SOM находим SM: SM = √(SO²+OM²) = 5 см. Пусть искомое расстояние равно h. Площадь треугольника SNM найдем двумя 1) S = 1/2 * SO * NM 2) S = 1/2 * h * SM Приравняем их и выразим h: h = SO * NM / SM = 4 см * 6 см / 5 см = 4.8 см.
21 век — век информационных технологий.
то, что еще совсем недавно казалось новым и неизведанным, сегодня уже неактуально.
мы покоряем космос уже не в околоземном пространстве, а отправляем свои исследовательские мини-станции на марс, ведется разведка сатурна, юпитера и титана.
когда-то об этом можно было прочесть только в фантастических книгах. например, идеи романов жюль верна, такие как подводная лодка, стали реальностью в 20-м веке. настало время реализации самых смелых фантазий современности.
человек исследует океанское дно с сверхсложной аппаратуры и в онлайн-режиме это могут наблюдать миллионы пользователей интернета. паутина стала всеобъемлющим пространством, которое объединило все и вся.
люди из разных уголков нашей планеты свободно общаются в режиме реального времени друг с другом, обмениваются фото-, видеозаписями, мнениями, насущные вопросы.
все большее число людей могут с уверенностью заявить, что 21 век — век информационных технологий, потому что эти самые технологии не отпускают их в реальную жизнь.
Рассмотрим треугольник SNM. Это равнобедренный треугольник, где SN = SM. Пусть O - проекция вершины пирамиды на плоскость основания пирамиды. Так как пирамида правильная, O является серединой NM, а SO - высотой треугольника SNM из вершины S. По условию, SO = 4 см, AD = 6 см. Так как AD = NM = 2OM, то OM = 6 см / 2 = 3 см. Из прямоугольного треугольника SOM находим SM: SM = √(SO²+OM²) = 5 см.
Пусть искомое расстояние равно h. Площадь треугольника SNM найдем двумя
1) S = 1/2 * SO * NM
2) S = 1/2 * h * SM
Приравняем их и выразим h:
h = SO * NM / SM = 4 см * 6 см / 5 см = 4.8 см.