Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Теорема о свойствах отрезков прямой, проходящей через точку пересечения диагоналей параллелограмма: Данные отрезки делятся точкой пересечения диагоналей параллелограмма пополам.
Доказательство: пусть АВСD - данный параллелограмм и EF - прямая, пересекающая параллельные стороны AD и ВС. Треугольники ВОЕ и FOD равны по второму признаку (стороне и двум прилежащим углам). В этих треугольниках:
ВО = ОD, так как О - середина диагонали АС,
Углы при вершине О равны, как вертикальные, а углы BOE и FOD равны, как внутренние накрест лежащие при параллельных АС и ВС и секущей BD. Из равенства треугольников следует равенство сторон: OE = OF, что и требовалось доказать.
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
См. рис.1
Так как ABCD - параллелограмм, то: AO = OC; BO = OD.
По теореме о свойствах отрезков прямой, проходящей через точку пересечения диагоналей параллелограмма: OP = OM и OK = ON.
Так как ∠BOP = ∠MOD и ∠BON = ∠KOD, как вертикальные, то:
ΔВОР = ΔMOD по 1-му признаку равенства треугольников (по двум сторонам и углу между ними), то BP = MD = 7 см.
ΔBON = ΔDOK по тому же 1-му признаку равенства треугольников. Следовательно: BN = KD = 6 см.
Периметр параллелограмма АВСD:
Р = 2*(AB + AD) = 2*(16+6 + 18+7) = 2 * 47 = 94 (см)
-------------------------------
См. рис.2
Теорема о свойствах отрезков прямой, проходящей через точку пересечения диагоналей параллелограмма: Данные отрезки делятся точкой пересечения диагоналей параллелограмма пополам.
Доказательство: пусть АВСD - данный параллелограмм и EF - прямая, пересекающая параллельные стороны AD и ВС. Треугольники ВОЕ и FOD равны по второму признаку (стороне и двум прилежащим углам). В этих треугольниках:
ВО = ОD, так как О - середина диагонали АС,
Углы при вершине О равны, как вертикальные, а углы BOE и FOD равны, как внутренние накрест лежащие при параллельных АС и ВС и секущей BD. Из равенства треугольников следует равенство сторон: OE = OF, что и требовалось доказать.