А) По известной теореме через центр симметрии и данную прямую можно провести единственную плоскость.
Пусть О — центр симметрии, а — данная прямая, α — плоскость, проведенная через О и а.
Пусть А ∈ а, построим отрезок ОА.
Продолжим ОА за точку О на расстояние ОА1=АО. Получим точку А1, симметричную А.
Пусть В ∈ а, построим отрезок ОВ. Продолжим ОВ за точку О на расстояние ОВ1=ОВ. Получим точку B1, симметричную точке В.
Через А1 и В1 проведем прямую b. Рассмотрим ΔAОВ и ΔА1ОВ1⋅AО=А1О, ВО=ОВ1, ΔАОВ=ΔА1ОВ1 как вертикальные, следовательно, ΔAОВ=ΔА1ОВ1.
Тогда, ∠1=∠2 и а || b.
б) Пусть А ∈ а. Симметричная ей точка А1 тоже принадлежит прямой а; АО=ОА1.
Точка А произвольна, следовательно, любая точка прямой, а также симметричная точка относительно центра О лежат на прямой а, следовательно, прямая а переходит сама в себя при условии, что проходит через центр симметрии.
М. южн. угол, зауголок, закоелок, тупик; вершина или конец глухого захода, залива, заводи, мыса и пр. Загнали волка в кут — там ему и капут! || Угол крестьянской избы; четыре угла избы отвечают четырем покоям: передней, гостиной, спальне и стряпной;кут, куть, кутник, называется придверный угол и прилавок, коник (твер. пск. ряз. тул. пенз. влад. яросл. костр. ниж. вят.);местами же бабий угол, середа, шелнуша, стряпная за перегородкою, за занавескою (вор. кур. калужск. вологодск. перм. арх. сиб. сар.) в новг. этот же угол, если полати там, а не при дверях; наконец кут красный угол (новг. пск. смол. кур.). Из кута по лавке, шелудяк наголо! бранное на свадебных гостей, дрянные гости. Тащи стол на кут! от печи в красный угол. Садись на кут, да и все тут
Пусть О — центр симметрии, а — данная прямая, α — плоскость, проведенная через О и а.
Пусть А ∈ а, построим отрезок ОА.
Продолжим ОА за точку О на расстояние ОА1=АО. Получим точку А1, симметричную А.
Пусть В ∈ а, построим отрезок ОВ. Продолжим ОВ за точку О на расстояние ОВ1=ОВ. Получим точку B1, симметричную точке В.
Через А1 и В1 проведем прямую b. Рассмотрим ΔAОВ и ΔА1ОВ1⋅AО=А1О, ВО=ОВ1, ΔАОВ=ΔА1ОВ1 как вертикальные, следовательно, ΔAОВ=ΔА1ОВ1.
Тогда, ∠1=∠2 и а || b.
б) Пусть А ∈ а. Симметричная ей точка А1 тоже принадлежит прямой а; АО=ОА1.
Точка А произвольна, следовательно, любая точка прямой, а также симметричная точка относительно центра О лежат на прямой а, следовательно, прямая а переходит сама в себя при условии, что проходит через центр симметрии.