Ортогональна проекція прямокутного трикутника з катетами 40 см і 30 см є трикутник . кут між площинами обох трикутників становить 60 градусів . обчислити площу проекції даного трикутника
Объяснение: Вопрос явно неполный - не указан второй из смежных углов. Правильно: Углы ABC и BCD – смежные, причем угол ABC равен 124 градуса. Найдите угол между перпендикуляром, проведенным из точки B к прямой AD и биссектрисой угла CBD.
* * *
Сумма смежных углов 180°, поэтому ∠СВD=180°- ∠ABC=180°-124°=56°.
Обозначим биссектрису угла СВD как ВМ. Биссектриса угла делит его пополам, поэтому ∠СВМ=∠DBM=56°:2=28°
У задачи 2 варианта решения.
а) Перпендикуляр ВК к прямой AD лежит в той же полуплоскости, что луч ВС. Тогда искомый угол КВМ=∠КВD-∠MBD=90°-28°=62°
б) Перпендикуляр ВК1 лежит во второй полуплоскости. Тогда искомый угол К1ВМ=∠K1BD+∠DBM=90°+28°=118°
7. Если центр лежит на оси ординат, то абсцисса центра равна нулю;
(х-х₀)²+(у-у₀)²=R²; х₀=0; R=10
подставим точку А и радиус, учитывая х₀=0; получим
х²+(у-у₀)²=100; 64+(-1-у₀)²=100; (-1-у₀)²=36; 1+у₀=±6; ⇒у₀=5 или у₀=-7;
Значит, уравнение имеет вид х²+(у-5)²=100 или х²+(у+7)²=100
8. найдем координаты середин диагоналей, если они совпадут. то четырехугольник, у которого диагонали пересекаются и точкой пересечения делятся пополам, является по признаку параллелограммом.
Для АС середина имеет координаты х=(-2+2)/2=0; у=(3+7)/2=5, середина АС есть точка (0;5);
Для BD середина имеет координаты х=(4-4)/2=0; у=(-3+13)/2=5, середина BD есть точка (0;5), точки совпали. Доказано.
9. У параллельных прямых совпадают угловые коэффициенты.
уравнение данной в условии прямой запишем так. у=2х+3, откуда к=2, значит, искомая прямая имеет вид у=2х+b; подставим точку А в это уравнение. получим.
ответ: a) 62°; б) 118°
Объяснение: Вопрос явно неполный - не указан второй из смежных углов. Правильно: Углы ABC и BCD – смежные, причем угол ABC равен 124 градуса. Найдите угол между перпендикуляром, проведенным из точки B к прямой AD и биссектрисой угла CBD.
* * *
Сумма смежных углов 180°, поэтому ∠СВD=180°- ∠ABC=180°-124°=56°.
Обозначим биссектрису угла СВD как ВМ. Биссектриса угла делит его пополам, поэтому ∠СВМ=∠DBM=56°:2=28°
У задачи 2 варианта решения.
а) Перпендикуляр ВК к прямой AD лежит в той же полуплоскости, что луч ВС. Тогда искомый угол КВМ=∠КВD-∠MBD=90°-28°=62°
б) Перпендикуляр ВК1 лежит во второй полуплоскости. Тогда искомый угол К1ВМ=∠K1BD+∠DBM=90°+28°=118°
7. Если центр лежит на оси ординат, то абсцисса центра равна нулю;
(х-х₀)²+(у-у₀)²=R²; х₀=0; R=10
подставим точку А и радиус, учитывая х₀=0; получим
х²+(у-у₀)²=100; 64+(-1-у₀)²=100; (-1-у₀)²=36; 1+у₀=±6; ⇒у₀=5 или у₀=-7;
Значит, уравнение имеет вид х²+(у-5)²=100 или х²+(у+7)²=100
8. найдем координаты середин диагоналей, если они совпадут. то четырехугольник, у которого диагонали пересекаются и точкой пересечения делятся пополам, является по признаку параллелограммом.
Для АС середина имеет координаты х=(-2+2)/2=0; у=(3+7)/2=5, середина АС есть точка (0;5);
Для BD середина имеет координаты х=(4-4)/2=0; у=(-3+13)/2=5, середина BD есть точка (0;5), точки совпали. Доказано.
9. У параллельных прямых совпадают угловые коэффициенты.
уравнение данной в условии прямой запишем так. у=2х+3, откуда к=2, значит, искомая прямая имеет вид у=2х+b; подставим точку А в это уравнение. получим.
5=2*(-1)+b; ⇒7=b;
Искомое уравнение прямой примет вид у=2х+7