Теорема пифагора: квадрат гипотенузы равен квадрату катетов. 1)с^2= 8^2+1^2=64+1=65 с=корень из 65 2) 12^2=10^2+b^2 144=100+b^2 b^2= 44 b= 2 корень из 11 3)диагонали при пересечении делятся пополам. получается треугольник с катетами 6 см и 8 см, а сторона ромба это гипотенуза треугольника. с^2=36+64 с^2=100. с=10 см. сторона ромба =10 см 4) диагональ прямоугольника образует со сторонами прямоугольный треугольник. с^2=36+49. с^2=85. с =корень из 85 5) в равнобедренном треугонике боковые стороны равны. s= 11×11×10=1210
ВС и AD - основания трапеции. Провести дополнительно радиусы окружности OC и OD. А также прямую OM перпендикулярную ВС и AD, которая делит основания пополам. Провести прямую BE перпендикулярную AD. EN=BM=BC/2=1,5. AE=AN-EN=AD/2-EN=1. BE=Корень кв. из (AB^2 - AE^2) = Корень кв. из 3. OD^2=ND^2+ON^2. OC^2=OM^2+MC^2. OM=ON+MN = ON+Корень кв. из 3. OD^2=OC^2. ND=2,5. MC=1,5. ND^2+ON^2 = OC^2+MC^2. 2,5^2 + ON^2 = (ON^2 + Корень кв. из 3)^2 + 1,5^2. Решая уравнение, получим ON^2 = 1/12. Отсюда OD^2 = 19/3. Площадь круга S = Пи * OD^2 = 3 * 19/3 = 19.