Диагонали равнобедренной трапеции равны, поэтому oc: ao=ob: do=2: 5 и, так как ∢boc=∢aod, то δaod∼δboc (по второму признаку подобия треугольников: две стороны одного треугольника пропорциональны двум сторонам другого и углы, лежащие между этими сторонами равны). 2. так как δaod∼δboc, то adbc=aooc=52. из этого соотношения выражаем и вычисляем большее основание трапеции ad: ad=5×bc2=5×122=30 см. 3. вычисляем ae: ae=ad−bc2=30−122=182=9 см. 4. так как δabe — прямоугольный треугольник, то находим боковую сторону ab по теореме пифагора: ab=be2+ae2−−−−−−−−−−√=122+92−−−−−−−√=144+81−−−−−−−√=225−−−√=15 см. 5. находим периметр равнобедренной трапеции abcd: p(abcd)= 2×ab+ad+bc=2×15+30+12=72 см.
Там где теорема Пифагора нужно всё писать в корне и в квадрате ещё , там где мы вымеряем площю в отказе нужно написать сантиметров квадратных. Надеюсь я всё внятно написала.
1. Б.
2. Решение:
АВС; угол А=90 градусов; АС=6см; ВС=10см; АВ=8см.
S= АВ•АС÷2=8•6÷2=24см.
Адказ: 24см.
3. Решение:
S=AC•BH÷2
BC=AB=(P-AC)÷2=(36-10)÷2=13см.
HC=AH, так як АВ=ВС и ВН паралельно АС.
НС=АС÷2=5см.
Решаем по теореме Пифагора:
ВН= ВС-НС= 13-5=169-25=144=12см.
S=10•12÷2=60см.
Адказ: 60см.
4. Решение:
S=BH•CH=AD•CF.
S=6•4=8•CF. CF=3см.
Адказ: 3см.
Объяснение:
Там где теорема Пифагора нужно всё писать в корне и в квадрате ещё , там где мы вымеряем площю в отказе нужно написать сантиметров квадратных. Надеюсь я всё внятно написала.