Если из одной точки проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равно квадрату касательной. В нашем случае из одной точки А, лежащей на большей окружности проведена касательная АМ к меньшей окружности и секущая АВ, проходящая через общий центр О (окружности концентрические). Точка касания М делит хорду пополам значит АМ=10см. Тогда 10² = (R+r)*(R-r). Или 100=R^2-r^2. Но r = (2/3)*R. Подставляем и имеем 100=(5/9)*R^2. Отсюда R = 6√5см, а r = 4√5см.
Или так: из прямоугольного треугольника ОМА по Пифагору имеем: ОА^2-ОМ^2=АМ^2 или R^2-r^2=100 или (5/9)*R=100 Отсюда R=6√5см. r=4√5 см.
Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки, на которые высота из прямого угла делит гипотенузу. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Отсюда h² =12*3=36 h=6 По теореме Пифагора из треугольников, на которые высота разделила исходный треугольник, найти катеты сложности не представляет. Меньший катет равен 3√5, больший - 6√5 Проверка: Квадрат гипотенузы равен (3√5)²+ (6√5)²=225 Гипотенуза равна √225=15, что соответствует условию задачи.
В нашем случае из одной точки А, лежащей на большей окружности проведена касательная АМ к меньшей окружности и секущая АВ, проходящая через общий центр О (окружности концентрические). Точка касания М делит хорду пополам значит АМ=10см. Тогда 10² = (R+r)*(R-r). Или 100=R^2-r^2. Но r = (2/3)*R. Подставляем и имеем 100=(5/9)*R^2.
Отсюда R = 6√5см, а r = 4√5см.
Или так: из прямоугольного треугольника ОМА по Пифагору имеем:
ОА^2-ОМ^2=АМ^2 или
R^2-r^2=100 или
(5/9)*R=100
Отсюда R=6√5см. r=4√5 см.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Отсюда h² =12*3=36
h=6
По теореме Пифагора из треугольников, на которые высота разделила исходный треугольник, найти катеты сложности не представляет.
Меньший катет равен 3√5,
больший - 6√5
Проверка:
Квадрат гипотенузы равен (3√5)²+ (6√5)²=225
Гипотенуза равна √225=15, что соответствует условию задачи.