Определить истинную длину линий: 1) длина линии 750 метров рулетка длиной 50 метров ошибка компарирования рулеты 8 миллиметров 2)линия измерена дважды прямо 449.63 м обратно 449.12 м дать оценку точности
Примем в ∆ АВС ∠ВАС=а, ∠АСВ=с. Продолжим медиану на её длину до т.Д. Соединив вершины А и С с Д, получим параллелограмм АВСД ( из признака параллелограмма – диагонали точкой пересечения М делятся пополам). ∠САД=с (накрестлежащие при пересечении параллельных ВС и АД секущей АС). Аналогично ∠АСД=а (накрестлежащий углу ВАС.
По условию ∠АВМ=а+с. В ∆ АДВ углы при основании АВ равны а+с ⇒ АД=ВД. На том же основании в ∆ ВСД углы при СД равны а+с, и ВС=ВД. По построению ВМ=МД, ⇒ВМ =ВС:2, т.е. отношение медианы ВМ:ВС=1:2
Примем в ∆ АВС ∠ВАС=а, ∠АСВ=с. Продолжим медиану на её длину до т.Д. Соединив вершины А и С с Д, получим параллелограмм АВСД ( из признака параллелограмма – диагонали точкой пересечения М делятся пополам). ∠САД=с (накрестлежащие при пересечении параллельных ВС и АД секущей АС). Аналогично ∠АСД=а (накрестлежащий углу ВАС.
По условию ∠АВМ=а+с. В ∆ АДВ углы при основании АВ равны а+с ⇒ АД=ВД. На том же основании в ∆ ВСД углы при СД равны а+с, и ВС=ВД. По построению ВМ=МД, ⇒ВМ =ВС:2, т.е. отношение медианы ВМ:ВС=1:2
Верны ли утверждения?
1) В треугольнике со сторонами 2, 3 и 4 косинус угла, лежащего против меньшей стороны, меньше, чем 2/3.
Проверим по теореме косинусов:
2²=3²+4²-2*12 *cosх
4=9+16 - 24cosх
24cosх=21
cosх=7/8
ответ: неверно.
2)Всякий треугольник можно разрезать на 4 равных треугольника.
Верно. Для этого нужно провести средние линии, параллельно каждой стороне треугольника.
3)Если площадь треугольника со сторонами 3 и 4 равна 6, то третья сторона треугольника равна 5.
Верно. Это прямоугольный треугольник с катетами 3 и 4 (египетский, в которм гипотенуза равна 5. Можно проверить по теореме Пифагора)