Медиана делит сторону, к которой она проведена, на два равных отрезка, также она является высотой т.е мы получаем два равных прямоугольных треугольника. Стороны равностороннего треугольника обозначим обозначим за Х Теперь рассмотрим один из прямоугольных треугольников: гипотенуза равна Х катет1 равен х/2(это половина стороны,к которой проведена высота) катет2 равен медиане по т пифагора найдем гипотенузу(х) х^2=(x/2)^2+(12 корней из 3)^2 x^2=432+x^2/4 (умножаем все на 4) 4x^2=1728+x^2 4x^2-x^2=1728 3x^2=1728 x^2=1728/3 x^2=576 х=корень из 576 х=24
Пусть О - точка пересечения медиан треугольника АВС. Треугольники AOP и BOM подобны по двум углам (два угла равны по условию, еще два угла вертикальные). Тогда:
Так как медианы точкой пересечения делятся в отношении 2:1, то:
Если медианы, проведенные к двум сторонам треугольника равны, то и сами стороны также равны. Значит, АС=ВС и треугольник АВС равнобедренный. Рассмотрим треугольник АМС. По теореме косинусов, учитывая соотношение АС=2СМ, получим:
Следовательно стороны в два раза больше: Тогда площадь треугольника найдем как половину произведения двух его сторон на синус угла между ними:
Стороны равностороннего треугольника обозначим обозначим за Х
Теперь рассмотрим один из прямоугольных треугольников:
гипотенуза равна Х
катет1 равен х/2(это половина стороны,к которой проведена высота)
катет2 равен медиане
по т пифагора найдем гипотенузу(х)
х^2=(x/2)^2+(12 корней из 3)^2
x^2=432+x^2/4 (умножаем все на 4)
4x^2=1728+x^2
4x^2-x^2=1728
3x^2=1728
x^2=1728/3
x^2=576
х=корень из 576
х=24
Так как медианы точкой пересечения делятся в отношении 2:1, то:
Если медианы, проведенные к двум сторонам треугольника равны, то и сами стороны также равны. Значит, АС=ВС и треугольник АВС равнобедренный.
Рассмотрим треугольник АМС. По теореме косинусов, учитывая соотношение АС=2СМ, получим:
Следовательно стороны в два раза больше:
Тогда площадь треугольника найдем как половину произведения двух его сторон на синус угла между ними:
ответ: 2/3