1. При перетині паралельних прямих січною утворюються 4 однакові пари кутів: 37° і 180 - 37 = 143°. Тобто, серед семи інших кутів три по 37° і чотири по 143°.
2. Сума внутрішніх одностороніх кутів, утворених при перетині паралельних прямих січною, складає 180°. Отже:
6х + 3х = 180
9х = 180
х = 20
3·20 = 60°
6·20 = 120°
Кути дорівнюють 60° і 120°.
3. Сума кутів, утворених при перетині двох прямих складає 360°.
Тому четвертий кут дорівнює: 360 - 209 = 151°.
Отже, чотири з восьми кутів дорівнюють 151° кожен, ще чотири мають по 180 - 151 = 29° кожен.
Высота равнобедренного треугольника, проведенного к основанию 6, делит основание пополам. ( cм. рисунок в приложении) Высота разбивает равнобедренный треугольник на два прямоугольных с гипотенузой 5 см и катетом 3 см. Второй катет 4 см ( по теореме Пифагора, это египетский треугольник) S=6·4/2=12 кв. ед Вершина пирамиды проектируется в центр описанной окружности (см. рисунок, три прямоугольных треугольника равны по катету ( высота пирамиды - общая и острому углу) r=S/p=12/(5+5+6)/2=24/16=3/2=1,5 H=r·tg60°=1,5·√3=3√3/2
1. При перетині паралельних прямих січною утворюються 4 однакові пари кутів: 37° і 180 - 37 = 143°. Тобто, серед семи інших кутів три по 37° і чотири по 143°.
2. Сума внутрішніх одностороніх кутів, утворених при перетині паралельних прямих січною, складає 180°. Отже:
6х + 3х = 180
9х = 180
х = 20
3·20 = 60°
6·20 = 120°
Кути дорівнюють 60° і 120°.
3. Сума кутів, утворених при перетині двох прямих складає 360°.
Тому четвертий кут дорівнює: 360 - 209 = 151°.
Отже, чотири з восьми кутів дорівнюють 151° кожен, ще чотири мають по 180 - 151 = 29° кожен.
Высота разбивает равнобедренный треугольник на два прямоугольных с гипотенузой 5 см и катетом 3 см. Второй катет 4 см ( по теореме Пифагора, это египетский треугольник)
S=6·4/2=12 кв. ед
Вершина пирамиды проектируется в центр описанной окружности
(см. рисунок, три прямоугольных треугольника равны по катету ( высота пирамиды - общая и острому углу)
r=S/p=12/(5+5+6)/2=24/16=3/2=1,5
H=r·tg60°=1,5·√3=3√3/2